Laboratory of Modelling of Multiphysical Problems

Department:   Department D 3 - Dynamics and Vibration
Head:   Ing. Vojtěch Radolf, Ph.D.

The laboratory is engaged mainly in problems with respect to the interaction of flowing fluids and deformable bodies. To study these problems, theoretical (mathematical) models are developed and verified in aerodynamic tunnels and in the special experimental setup for modelling the human phonation generated by artificial vocal folds. The vibration characteristics and stability limits of aerohydroelastic systems are studied, as well as acoustic-structural couplings of vibrating bodies in interaction with acoustic media and aeroelastic interactions in the biomechanics of the human voice.

Other research topics of the laboratory are biomechanics of joint implants with the objective to increase the reliability of joint replacements and biophysics of cardial cells, where the biophysical events responsible for electrical and mechanical activity of cardiac cells are investigated.

Aeroelasticity of airfoils

The laboratory is engaged in the development of theoretical models for the study of the interaction of flowing fluids and deformable bodies and their verification in aerodynamic tunnels. Attention is paid to the vibration characteristics and stability limits of aerohydroelastic systems, especially airfoils.

Collaboration:
Faculty of Mechanical Engineering, Czech Technical University in Prague (doc. Mgr. Petr Sváček, Ph.D.)
Faculty of Mathematics and Physics, Charles University in Prague (prof. RNDr. Miloslav Feistauer, DrSc.)

Responsible researcher:
J. Horáček, I. Zolotarev

Research team:
V. Bula, J. Kozánek, M. Luxa, P. Šidlof, V. Vlček

 


Numerical simulation of flutter for 3 DOF airfoil NACA 0012 (on the left)
Interferograms of fluttering 2 DOF airfoil NACA 0015 in a wind tunnel (on the right)

 

 

Biomechanics of human voice

This research is focused on mathematical and multiphysical modelling of acoustic-structural couplings of vibrating bodies in interaction with acoustic media and modelling of aeroelastic interactions in biomechanics of human voice. The voice source is modelled by self-excited oscillations of vocal folds caused by air-flow coming from lungs, as well as acoustic pressure modified by frequency-modal properties of the human vocal tract during phonation of vowels.

Collaboration:
University of Tampere, Finland (prof. Anne-Maria Laukkanen, Ph.D.)

Faculty of Mechanical Engineering, Czech Technical University in Prague (prof. Dr. Ing. Tomáš Vampola)
Faculty of Sciences, Palacký University Olomouc (RNDr. Jan Švec, Ph.D. et Ph.D.)
Institute of Macromolecular Chemistry of Academy of Sciences of the Czech Republic (Dr. Ing. Miroslava Dušková-Smrčková)

Responsible researcher:
J. Horáček

Research team:
V. Bula, M. Feistauer, V. Radolf, V. Řidký, P. Sváček, P. Šidlof, P. Švancara, V. Uruba, J. Valášek

 

Air flow in a model of glottis region for vowel

 

Aeroelastic model of vocal folds self-oscillations

PIV measurement of air flow in a model of glottis region for vowel [i:] behind the vibrating artificial vocal folds (above)
Aeroelastic model of vocal folds self-oscillations (below)

 

 

Biomechanics of joint implants

The research is focused on modelling of the hip joint implants. The research objective is to increase the reliability of joint replacements. Reliability of ceramc heads is based on the Weibull weakest link theory. In order to calculate the failure probability it is necessary to determine the volume, in which the stress acts, and the material description of ceramics. Stress in the ceramic heads is determined numerically by finite element method (FEM). Material characteristics are determined experimentally from a set of destruction tests and subsequent statistical processing.

Collaboration:
Faculty of Mechanical Engineering, Brno UT (prof. Ing. Přemysl Janíček, DrSc.; Ing. Tomáš Návrat, Ph.D.)
Hospital U sv. Anny in Brno
Hospital Bohunice in Brno

Responsible researcher:
V. Fuis

 


In vivo destroyed ceramic head of a hip joint implant

 

 

Biophysics of cardiac cells

The research is focused on the investigation of biophysical events responsible for electrical and mechanical activity of cardiac cells. Special attention is devoted to the investigation of the function of cardiac t-tubules under physiological and pathophysiological conditions and to the exploration of the effects of various drugs on cardiac cell function. The principal method of this research is computational modelling using mathematical models of cardiac cells formulated on the basis of experimental data obtained from electrophysiological experiments in laboratories of our and foreign collaborating institutions.

Collaboration:
Department of Physiology, Masaryk University, Czech  Republic (Assoc. prof. Markéta Bébarová)
Department of Experimental and Clinical Medicine, University of Florence, Italy (Dr. Cecilia Ferrantini)
European Laboratory for Non-Linear Spectroscopy, University of Florence, Italy (Dr. Leonardo Sacconi)
Laboratory of Neurocardiology, Claude Bernard University Lyon 1, France (Dr. Georges Christé)

Publications and codes of models:
List of publications and codes of cellular models can be found under the item More information.

Responsible researcher:
M. Pásek

 

Izolované srdeční komorové buňky.

Isolated ventricular cardiomyocytes.

 

Schematický diagram matematického modelu lidské srdeční komorové buňky.

Schematic diagram of mathematical model of human ventricular cardiomyocyte.

 

Vliv geneticky podmíněné mutace IKs kanálů na buněčnou elektrickou aktivitu v matematickém modelu; levý graf ukazuje pravidelnou (fyziologickou) aktivitu, pravý graf představuje nepravidelnou (nefyziologickou) aktivitu modelu vyvolanou dysfunkcí kanálů za specifických podmínek (publikováno v Sci. Rep. 2021;11:3573).

Impact of genetically inherited mutation of IKs-channels on cellular electrical activity
in the mathematical model; left graph shows regular (physiological) activity, right graph
represents irregular (nonphysiological) activity of the model cell induced by dysfunction
of the channels at specific conditions (published in
Sci. Rep. 2021;11:3 573).

Related papers

Aeroelasticity of airfoils

Balázsová M., Česenek J., Feistauer M., Sváček P., Horáček J.: Comparison of numerical methods for the solution of viscous incompressible and low Mach number compressible flow. Computers & Fluids. 2018, Vol. 174, p. 167-178. ISSN 0045-7930.
http://hdl.handle.net/11104/0286926

Kozánek J., Vlček V., Zolotarev I.: The new airfoil model NACA0015, modal analysis and flutter properties. Applied Mathematical Modelling. 2017, Vol. 46, June, p. 698-706. ISSN 0307-904X.
http://hdl.handle.net/11104/0272061

Šidlof P., Vlček V., Štěpán M.: Experimental investigation of flow-induced vibration of a pitch-plunge NACA 0015 airfoil under deep dynamic stall. Journal of Fluids and Structures. 2016, Vol. 67, November, p. 48-59. ISSN 0889-9746.
http://hdl.handle.net/11104/0266045

Feistauer M., Horáček J., Sváček P.: Numerical Simulation of Airfoil Vibrations Induced by Turbulent Flow. Communications in Computational Physics. 2015, Vol. 17 (1), p. 146-188. ISSN 1815-2406.
http://hdl.handle.net/11104/0241045

Sváček P., Horáček J.: Numerical simulation of aeroelastic response of an airfoil in flow with laminar-turbulence transition. Applied Mathematics and Computation. 2015, Vol. 267, September, p. 28-41. ISSN 0096-3003.
http://hdl.handle.net/11104/0251414

Sváček P., Horáček J.: On mathematical modeling of fluid-structure interactions with nonlinear effects: Finite element approximations of gust response. Journal of Computational and Applied Mathematics. 2015, Vol. 273, Januar, p. 394-403 ISSN 0377-0427.
http://hdl.handle.net/11104/0238718

Kozánek J., Vlček V., Zolotarev I.: The flow field acting on the fluttering profile, kinematics, forces and total moment. International Journal of Structural Stability and Dynamics. 2013, Vol. 13 (7), p. 1-7. ISSN 0219-4554.
http://hdl.handle.net/11104/0224095

Feistauer M., Horáček J., Růžička M., Sváček P.: Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom. Computers & Fluids. 2011, Vol. 49 (1), p. 110-127. ISSN 0045-7930.
http://hdl.handle.net/11104/0198978

Kozánek J., Vlček V., Zolotarev I.: The flow field acting on the fluttering profile, measurements and evaluation. In Awrejcewicz, J.; Kazmierczak, P.; Olejnik, P.; Mrozowski, J. (ed.). Dynamical system. Lodž : Department of Automation and Biomechanics, 2011, p. 283-288. ISBN 978-83-7283-447-8.
http://hdl.handle.net/11104/0203201

Vlček V., Kozánek J., Zolotarev I.: Forces acting on the fluttering. Profile in the wind tunnel. In Segĺa, Š.; Tůma, J.; Petríková, I.; Pešek, L. (ed.). Vibration Problems ICOVP 2011 - Supplement. Liberec : Technical University of Liberec, 2011, p. 516-522. ISBN 978-80-7372-759-8.
http://hdl.handle.net/11104/0199330

Vlček V., Kozánek J.: Preliminary interferometry measurements of a flow field around fluttering NACA0015 profile. Acta Technica. 2011, Vol. 56 (4), p. 379-387. ISSN 0001-7043.
http://hdl.handle.net/11104/0207826

Vlček V., Horáček J., Luxa M., Veselý J.: Visualization of unsteady flow around a vibrating profile. In Zolotarev, I.; Horáček, J. (ed.). Flow-Induced Vibration. Praha : Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v. v. i., 2008, p. 531-536. ISBN 80-87012-12-7.
http://hdl.handle.net/11104/0162346

Zolotarev I. (ed.), Horáček J. (ed.): Flow - induced vibration : FIV 2008. Praha : Ústav termomechaniky AV ČR, v. v. i, 2008. 892 p. ISBN 80-87012-12-7.
http://hdl.handle.net/11104/0169122

Dubcová L., Feistauer M., Horáček J., Sváček P.: Numerical simulation of airfoil vibrations induced by turbulent flow. Journal of Computational and Applied Mathematics. 2008, Vol. 218 (1), p. 34-42. ISSN 0377-0427.
http://hdl.handle.net/11104/0161670

Gorman D.G., Trendafilova I., Mulholland A.J., Horáček J.: Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction. Journal of Sound and Vibration. 2007, Vol. 308, -, p. 231-245. ISSN 0022-460X.
http://hdl.handle.net/11104/0148427

Sváček P., Feistauer M., Horáček J.: Numerical simulation of flow induced airfoil vibrations with large amplitudes. Journal of Fluids and Structures. 2007, Vol. 23, -, p. 391-411. ISSN 0889-9746.
http://hdl.handle.net/11104/0145004

 

 

Biomechanics of human voice

Laukkanen A. M., Geneid A., Bula V., Radolf V., Horáček J., Ikävalko T., Kukkonen T., Kankare E., Tyrmi, J.: How Much Loading Does Water Resistance Voice Therapy Impose on the Vocal Folds? An Experimental Human Study. Journal of Voice. 2020, Vol. 34 (3), p. 387-397. ISSN 0892-1997.
http://hdl.handle.net/11104/0309808

Horáček J., Radolf V., Laukkanen A. M.: Impact Stress in Water Resistance Voice Therapy: A Physical Modeling Study. Journal of Voice. 2019, Vol. 33 (4), p. 490-496. ISSN 0892-1997.
http://hdl.handle.net/11104/0298212

Horáček J., Radolf V., Laukkanen A. M.: Experimental and Computational Modeling of the Effects of Voice Therapy Using Tubes. Journal of Speech Language and Hearing Research. 2019, Vol. 62 (7), p. 2227-2244. ISSN 1092-4388.
http://hdl.handle.net/11104/0298242

Valášek J., Sváček P., Horáček J.: On suitable inlet boundary conditions for fluid-structure interaction problems in a channel. Applications of Mathematics. 2018, Vol. 64 (2), p. 225-251. ISSN 0862-7940.
http://hdl.handle.net/11104/0298227

Sváček P., Horáček J.: Finite element approximation of flow induced vibrations of human vocal folds model: Effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset. Applied Mathematics and Computation. 2018, Vol. 319, p. 178-194. ISSN 0096-3003.
http://hdl.handle.net/11104/0277624

Balázsová M., Feistauer M., Horáček J., Hadrava M., Kosík A.: Space-time discontinuous Galerkin method for the solution of fluid-structure interaction. Applications of Mathematics. 2018, Vol. 63 (6), p. 739-764. ISSN 0862-7940.
http://hdl.handle.net/11104/0291522

Horáček J., Radolf V., Laukkanen A. M.: Low frequency mechanical resonance of the vocal tract in vocal exercises that apply tubes. Biomedical Signal Processing and Control. 2017, Vol. 37, August, p. 39-49. ISSN 1746-8094.
http://hdl.handle.net/11104/0273088

Tyrmi J., Radolf V., Horáček J., Laukkanen A. M.: Resonance Tube or Lax Vox?. Journal of Voice. 2017, Vol. 31 (4), p. 430-437. ISSN 0892-1997.
http://hdl.handle.net/11104/0273087

Horáček J., Bula V., Radolf V., Šidlof P.: Impact stress in a self-oscillating model of human vocal folds. Journal of Vibration Engineering & Technologies, 2016, Vol. 4 (3), p. 183-190. ISSN 2321-3558.
http://hdl.handle.net/11104/0260823

Valášek J., Sváček P., Horáček J.: Numerical solution of fluid-structure interaction represented by human vocal folds in airflow. EPJ Web of Conferences, 2016, Vol. 114, March, 02130-02130. ISSN 2101-6275.
http://hdl.handle.net/11104/0260939

Vampola T., Horáček J., Klepáček I.: Computer simulation of mucosal waves on vibrating human vocal folds. Biocybernetics and Biomedical Engineering, 2016, Vol. 36 (3), p. 451-465. ISSN 0208-5216.
http://hdl.handle.net/11104/0259971

Radolf V., Horáček J., Dlask P., Otčenášek Z., Geneid A., Laukkanen A. M.: Measurement and mathematical simulation of acoustic characteristics of an artificially lengthened vocal tract. Journal of Sound and Vibration, 2016, Vol. 366, p. 556-570. ISSN 0022-460X.
http://hdl.handle.net/11104/0258657

Hampala V., Laukkanen A. M., Guzman M., Horáček J., Švec J. G.: Vocal Fold Adjustment Caused by Phonation Into a Tube: A Double-Case Study Using Computed Tomography. Journal of Voice, 2016, Vol. 29 (6), p. 733-742. ISSN 0892-1997.
http://hdl.handle.net/11104/0257177

Kosík A., Feistauer M., Hadrava M., Horáček J.: Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method. Applied Mathematics and Computation, 2015, Vol. 267, p. 382-396. ISSN 0096-3003.
http://hdl.handle.net/11104/0251415

Šidlof P., Zörner S., Huppe A.: A hybrid approach to the computational aeroacoustics of human voice production. Biomechanics and Modeling in Mechanobiology. 2015, Vol. 14 (3), p. 473-488. ISSN 1617-7959.
http://hdl.handle.net/11104/0247063

Vampola T., Horáček J., Švec J. G.: Modeling the Influence of Piriform Sinuses and Valleculae on the Vocal Tract Resonances and Antiresonances. Acta Acustica United with Acustica, 2015, Vol. 101 (3), p. 594-602. ISSN 1610-1928.
http://hdl.handle.net/11104/0246448

Vampola T., Horáček J., Laukkanen A. M., Švec J. G.: Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement. Logopedics Phoniatrics Vocology, 2015, Vol. 40 (1), p. 14-23. ISSN 1401-5439.
http://hdl.handle.net/11104/0257783

Feistauer M., Sváček P., Horáček J.: Numerical Simulation of Fluid–Structure Interaction Problems with Applications to Flow in Vocal Folds. Fluid-Structure Interaction and Biomedical Applications. 1. Basel: Birkhäuser, 2014 - (Bodnár, T.; Galdi, G.; Nečasová, Š.), p. 321-394. Advances in Mathematical Fluid Mechanics. ISBN 978-3-0348-0821-7.
http://hdl.handle.net/11104/0240731

Horáček J., Radolf V., Bula V., Laukkanen A. M.: Air-pressure, vocal folds vibration and acoustic characteristics of phonation during vocal exercising. - Part 2: Measurement on a physical model. Engineering Mechanics, 2014, Vol. 21 (3), p. 193-200. ISSN 1802-1484.
http://hdl.handle.net/11104/0239264

Radolf V., Laukkanen A. M., Horáček J., Liu D.: Air-pressure, vocal fold vibration and acoustic characteristics of phonation during vocal exercising. - Part 1: Measurement in vivo. Engineering Mechanics, 2014, Vol. 21 (1), p. 53-59. ISSN 1802-1484.
http://hdl.handle.net/11104/0239263

Pořízková P., Kozel K., Horáček J.: Numerical solution of compressible and incompressible unsteady flows in channel inspired by vocal tract. Journal of Computational and Applied Mathematics, 2014, Vol. 270, p. 323-329. ISSN 0377-0427.
http://hdl.handle.net/11104/0234509

Guzman M., Laukkanen A. M., Krupa P., Horáček J., Švec J. G., Geneid A.: Vocal Tract and Glottal Function During and After Vocal Exercising With Resonance Tube and Straw. Journal of Voice, 2013, Vol. 27 (4), "523.e19"-"523.e34". ISSN 0892-1997.
http://hdl.handle.net/11104/0223083

Feistauer M., Hasnedlová J., Horáček J., Kosík A., Kučera V.: DGFEM for dynamical systems describing interaction of compressible fluid and structures. Journal of Computational and Applied Mathematics, 2013, Vol. 254, p. 17-30. ISSN 0377-0427.
http://hdl.handle.net/11104/0221940

Šidlof P., Horáček J., Řidký V.: Parallel CFD simulation of flow in a 3D model of vibrating human vocal folds. Computers & Fluids, 2013, Vol. 80 (1), p. 290-300. ISSN 0045-7930.
http://hdl.handle.net/11104/0221936

Hasnedlová J., Feistauer M., Horáček J., Kosík A., Kučera V.: Numerical simulation of fluid-structure interaction of compressible flow and elastic structure. Computing, 2013, Vol. 95, Suppl 1, p. 343-361. ISSN 0010-485X.
http://hdl.handle.net/11104/0222469

Pořízková P., Kozel K., Horáček J.: Flows in convergent channel: comparison of numerical results of different mathematical models. Computing, 2013, Vol. 95, Suppl 1, p. 573-585. ISSN 0010-485X.
http://hdl.handle.net/11104/0221905

Pořízková P., Kozel K., Horáček J.: Numerical Simulation of Unsteady Compressible Flow in Convergent Channel: Pressure Spectral Analysis. Journal of Applied Mathematics. 2012, Vol. 2012 (545120) , p. 1-9. ISSN 1110-757X.
http://hdl.handle.net/11104/0209372

Laukkanen A. M., Horáček J., Havlík R.: Case-study magnetic resonance imaging and acoustic investigation of the effects of vocal warm-up on two voice professionals. Logopedics Phoniatrics Vocology, 2012, Vol. 37 (2), p. 75-82. ISSN 1401-5439.
http://hdl.handle.net/11104/0208540

Sváček P., Horáček J.: Numerical simulation of glottal flow in interaction with self oscillating vocal folds: Comparison of finite element approximation with simplified model. Communications in Computational Physics, 2012, Vol. 12 (3), p. 789-806. ISSN 1815-2406.
http://hdl.handle.net/11104/0208107

Laukkanen A.M., Horáček J., Krupa P., Švec J.G.: The effect of phonation into a straw on the vocal tract adjustments and formant frequencies. A preliminary MRI study on a single subject completed with acoustic results. Biomedical Signal Processing and Control, 2012, Vol. 7 (1), p. 50-57. ISSN 1746-8094.
http://hdl.handle.net/11104/0206393

Šidlof P., Doaré O., Cadot O., Chaigne A.: Measurement of flow separation in a human vocal folds model. Experiments in Fluids, 2011, Vol. 51(1), p. 123-136. ISSN 0723-4864.
http://hdl.handle.net/11104/0198234

Kniesburges S., Thomson S.L., Barney A., Triep M., Šidlof P., Horáček J., Brücker Ch., Becker S.: In vitro experimental investigation of voice production. Current Bioinformatics, 2011, Vol. 6 (3), p. 305-322. ISSN 1574-8936.
http://hdl.handle.net/11104/0199406

Vampola T., Laukkanen A.M., Horáček J., Švec J.G.: Vocal tract changes caused by phonation into a tube: A case study using computer tomography and finite-element modeling. Journal of the Acoustical Society of America, 2011, Vol. 129 (1), p. 310-315. ISSN 0001-4966.
http://hdl.handle.net/11104/0192580

Leino T., Laukkanen A.M., Radolf V.: Formation of the actor's/speaker's formant: A study applying spectrum analysis and computer modeling. Journal of Voice, 2011, Vol. 25 (2), p. 150-158. ISSN 0892-1997.
http://hdl.handle.net/11104/0190251

Horáček J., Šidlof P., Uruba V., Veselý J., Radolf V., Bula V.: Coherent structures in the flow inside a model of the human vocal tract with self-oscillating vocal folds. Acta Technica, 2010, Vol. 55 (4), p. 327-343. ISSN 0001-7043.
http://hdl.handle.net/11104/0193765

Vampola T., Horáček J., Vokřál, J.: FE modeling of human vocal tract acoustics. Part II. Influence of velopharyngeal insufficiency on phonation of vowels. Acta Acustica United with Acustica, 2008, Vol. 94 (3), p. 448-460. ISSN 1610-1928.
http://hdl.handle.net/11104/0161703

Vampola T., Horáček J., Švec J.: FE modeling of human vocal tract acoustics. Part I: Production of czech vowels. Acta Acustica United with Acustica, 2008, Vol. 94 (3), p. 433-447. ISSN 1610-1928.
http://hdl.handle.net/11104/0161698

Šidlof P., Švec J.G., Horáček J., Veselý J., Klepáček I., Havlík R.: Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. Journal of Biomechanics, 2008, Vol. 41, p. 985-995. ISSN 0021-9290.
http://hdl.handle.net/11104/0159412

Tokuda I., Horáček J., Švec J., Herzel H.: Comparsion of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments. Journal of the Acoustical Society of America, 2007, Vol. 122 (1), p. 519-531. ISSN 0001-4966.
http://hdl.handle.net/11104/0148429

Švancara P., Horáček J.: Numerical Modelling of Effect of Tonsillectomy on production of Czech Vowels. Acta Acustica United with Acustica, 2006, Vol. 92 (5), p. 681-688. ISSN 1610-1928.
http://hdl.handle.net/11104/0135810

Horáček J., Šidlof P., Švec J.G.: Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces. Journal of Fluids and Structures, 2005, Vol. 20 (6), p. 853-869. ISSN 0889-9746.
http://hdl.handle.net/11104/0112130

Horáček J., Švec J. G.: Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. Journal of Fluids and Structures, 2002, Vol. 16 (7), p. 931-955. ISSN 0889-9746.
http://hdl.handle.net/11104/0107807

Švec J. G., Horáček J., Šram F., Veselý J.: Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. Journal of the Acoustical Society of America, 2000, Vol. 108 (4), p. 1397-1407. ISSN 0001-4966.
http://hdl.handle.net/11104/0107137

 

 

Biomechanics of joint implants

Svojanovský T., Fuis V.: Stress analysis of the thin coating of the trapeziometacarpal replacement.
Defect and Diffusion Forum. Švýcarsko: Trans Tech Publication, 2018 - (Yahaya, M.; Ohashi, T.), p. 213-217. Defect and Diffusion Forum, 382. ISBN 978-303571209-4. ISSN 1012-0386.
http://hdl.handle.net/11104/0295288

Fuis V., Janíček P.: Sensitivity Analysis of the Material Parameters of the Ceramics on the Inner Radius of the Hip Joint Endoprosthesis Head. In: Jablonski, R.; Brezina, T. ed. Advanced Mechatronics Solutions. Warsawa: Springer, 2015, p. 123-128. Advances in Intelligent Systems and Computing, 393. ISBN 978-3-319-23921-7. ISSN 2194-5357.
http://hdl.handle.net/11104/0254430

Fuis V., Janíček P.: Stress analysis of the hip joint endoprosthesis ceramic head for different values of shape deviations. In: Advanced Materials Research. Dürnten: Trans Tech Publications Ltd, 2014, p. 770-775. ISBN 978-3-03835-102-3. ISSN 1022-6680.
http://hdl.handle.net/11104/0244577

Fuis V.: Tensile stress analyses of the hip joint endoprosthesis ceramic head with real shape deviations. In: 5th International Conference on Biomedical Engineering in Vietnam. NEW YORK: Springer Verlag, 2015, p. 450-453. IFMBE Proceedings, 46. ISBN 978-3-319-11775-1. ISSN 1680-0737.
http://hdl.handle.net/11104/0244582

Fuis V., Janíček P.: Calculation of the bio-ceramic material parameters. In: Mechatronics 2013: Recent Technological and Scientific Advances. Berlin: Springer, 2014, p. 855-861. ISBN 978-3-319-02293-2.
http://hdl.handle.net/11104/0244585

Fuis V., Koukal M., Florian Z., Janíček P.: Computational Modelling of the Shape Deviations of the Sphere Surfaces of Ceramic Heads of Hip Joint Replacement. In: Roa Romero, L. ed. XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. Seville: Springer, 2014, p. 89-92. IFMBE Proceedings, 41. ISBN 978-3-319-00845-5. ISSN 1680-0737.
http://hdl.handle.net/11104/0230746

Fuis V., Koukal M., Florian Z.: Shape deviations of the contact areas of the total hip replacement. In: Mechatronics - Recent Technological And Scientific Advances. Berlin: Springer, 2011, p. 203-212. ISBN 978-3-642-23243-5.
http://hdl.handle.net/11104/0205706

Fuis V., Málek M., Janíček P.: Probability of destructions in total joint endoprosthesis ceramic heads using Weibull's theory. In: Fuis, V. ed. Engineering Mechanics 2011. Praha: Ústav termomechaniky AVČR, v.v.i, 2011, p. 1-711. ISBN 978-80-87012-33-8.
http://hdl.handle.net/11104/0204918

Koukal M., Fuis V., Florian Z., Janíček P.: A Numerical Study of Effects of the Manufacture Perturbations to Contacts of the Total Hip Replacement. Engineering Mechanics. 2011, Vol. 18 (1), p. 33-42.
http://hdl.handle.net/11104/0199390

Fuis V., Návrat T.: Calculation of the ceramics Weibull parameters. World Academy of Science, Engineering and Technology. 2011, Vol. 58, p. 642-647.
http://hdl.handle.net/11104/0206598

Fuis V., Návrat T., Vosynek P.: Analyses of the Shape Deviations of the Contact Cones of the Total Hip Joint Endoprostheses. IFMBE Proceedings. Singapure : Springer, 2010 - (Lim, C.; Goh, J.) p. 1451-1454.
http://hdl.handle.net/11104/0199403

Fuis V.: Tensile stress analysis of the ceramic head with micro and macro shape deviations of the contact areas. Recent Advances in Mechatronics 2008-2009. Berlin : Springer, 2009, p. 425-430.
http://hdl.handle.net/11104/0179694

Fuis V., Janíček P., Hlavoň P.: CONTACT SURFACES OF BIG JOINTS – SITES OF THE DEVELOPMENT OF LIMIT STATES AND OTHER CONSIDERATIONS. Engineering Mechanics. 2008, Vol. 15 (5), p. 381-388.
http://hdl.handle.net/11104/0168400

Fuis V., Janíček P., Houfek L.: Stress and Reliability Analyses of the Hip Joint Endoprosthesis Ceramic Head with Macro and Micro Shape Deviations. 13th International Conference on Biomedical Engineering. Berlin: Springer Berlin Heidelberg, 2008, p. 1580-1584.
http://hdl.handle.net/11104/0170724

Fuis V., Varga J.: Stress Analyses of the Hip Joint Endoprosthesis Ceramic Head with Different Shapes of the Cone Opening. 13th International Conference on Biomedical Engineering. Berlin : Springer Berlin Heidelberg, 2008, p. 2012-2015.
http://hdl.handle.net/11104/0170725

Fuis V., Návrat T., Hlavoň P., Koukal M., Houfek M.: Analysis of contact pressure between the parts of total hip joint endoprosthesis with shape deviations. Journal of Biomechanics. 2007, Vol. 40, suppl. 2, s. 558-S558.
http://hdl.handle.net/11104/0148951

Fuis V., Návrat T., Hlavoň P., Janíček P.: Reliability of the Ceramic Head of the Total Hip Joint Endoprosthesis Using Weibull’s Weakest-link Theory. World Congress on Medical Physics and Biomedical Engineering 2006. Seoul : Springer, p. 1-4.
http://hdl.handle.net/11104/0137001

 

 

Biophysics of cardiac cells

Pásek M., Šimurda J., Bébarová M., Christé G.: Divergent estimates of the ratio between Na+-Ca2+ current densities in t-tubular and surface membranes of rat ventricular cardiomyocytes. J. Cell. Sci., 2021, Vol.134, jcs258228.
http://hdl.handle.net/11104/0320266

Synková I., Bébarová M., Andršová I., Chmelikova L., Švecová O., Hošek J., Pásek M., Vít P., Valášková I., Gaillyová R., Navrátil R.: Novotný T.: Long-QT founder variant T309I-Kv7.1 with dominant negative pattern may predispose delayed afterdepolarizations under β-adrenergic stimulation. Sci. Rep., 2021, Vol. 11, 3573.
http://hdl.handle.net/11104/0320267, Matlab code of the model

Bébarová M., Pásek M., Zahradník I.: Toward more accurate data in cardiac cellular electrophysiology. Prog. Biophys. Mol. Biol., 2020, Vol. 157, p. 1-2.
http://hdl.handle.net/11104/0315808

Kula R., Bébarová M., Matejovič P., Šimurda J., Pásek M.: Distribution of data in cellular electrophysiology: is it always normal? Prog. Biophys. Mol. Biol., 2020, Vol.157, p. 11-17.
http://hdl.handle.net/11104/0315826

Kula R., Bébarová M., Matejovič P., Šimurda J., Pásek M.: Current density as routine parameter for description of ionic membrane current: is it always the best option? Prog. Biophys. Mol. Biol., 2020, Vol. 157, p. 24-32.
http://hdl.handle.net/11104/0315805

Vaverka J., Moudr J., Lokaj P., Burša J., Pásek M.: Impact of decreased transmural conduction velocity on the function of the human left ventricle: a simulation study. Biomed. Res. Int., 2020, Vol. 2020, 2867865.
http://hdl.handle.net/11104/0315827

Vaverka J., Burša J., Šumbera J., Pásek M.: Effect of Transmural Differences in Excitation-Contraction Delay and Contraction Velocity on Left Ventricle Isovolumic Contraction: A Simulation Study. Biomed. Res. Int. 2018, Vol. 2018, 4798512. 2314-6133.
http://hdl.handle.net/11104/0291535

Pásek M., Šimurda J., Christé G.: Different densities of Na-Ca exchange current in t-tubular and surface membranes and their impact on cellular activity in a model of rat ventricular cardiomyocyte. Biomed. Res. Int., 2017, Vol. 2017, 6343821.
http://hdl.handle.net/11104/0268892

Hořáková Z., Matejovič P., Pásek M., Hošek J., Šimurdová M., Šimurda J., Bébarová M.: Effect of ethanol and acetaldehyde at clinically relevant concentrations on atrial inward rectifier potassium current IK1: separate and combined effect. J. Physiol. Pharmacol., 2016, Vol. 67, p. 339-351.
http://hdl.handle.net/11104/0265985

Bébarová M., Matejovič P., Pásek M., Hořáková Z., Hošek J., Šimurdová M., Šimurda J.: Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn Schmiedebergs Arch. Pharmacol., 2016, Vol. 389, p. 1049-1058.
http://hdl.handle.net/11104/0265986, Matlab code of the model

Pásek M., Bébarová M., Christé G., Šimurdová M., Šimurda J.: Acute effects of ethanol on action potential and intracellular Ca2+ transient in cardiac ventricular cells: a simulation study. Med. Biol. Eng. Comput., 2016, Vol. 54, p. 753-762.
http://hdl.handle.net/11104/0265983, Matlab code of the model

Bébarová M., Matejovič P., Pásek M., Šimurdová M., Šimurda J.: Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes. J. Physiol. Pharmacol., 2014, Vol. 65, p. 497-509.
http://hdl.handle.net/11104/0241387

Pásek M., Šimurda J., Orchard C.H.: Effect of Ca2+ efflux pathway distribution and exogenous Ca2+ buffers on intracellular Ca2+ dynamics in the rat ventricular myocyte: a simulation study. Biomed. Res. Int., 2014, Vol. 2014, 920208.
http://hdl.handle.net/11104/0241389, Matlab code of the model

Hrabcová D., Pásek M., Šimurda J., Christé G.: Effect of ion concentration changes in the limited extracellular spaces on sarcolemmal ion transport and Ca2+ turnover in a model of human ventricular cardiomyocyte. Int. J. Mol. Sci., 2013, Vol. 14, p. 24271-24292.
http://hdl.handle.net/11104/0228614

Pásek M., Šimurda, J., Orchard, C.H.: Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte. Eur. Biophys. J., 2012 , Vol. 41, p. 491-503.
http://hdl.handle.net/11104/0217494, Matlab code of the model

Kilianová A., Bébarová M., Beránková K., Opatřilová R., Pásek M., Bartošová L.: Effect of newly synthesized compounds 44Bu and 444 on QRS-complex width and fast sodium current: differences between isomers. Acta Vet. Brno, 2010, Vol. 79, p. 41-49.
http://hdl.handle.net/11104/0191532

Bébarová M., Matejovič P., Pásek M., Ohlídalová D., Jansová D., Šimurdová M., Šimurda J.: Effect of ethanol on action potential and ionic membrane currents in rat ventricular myocytes. Acta Physiol. (Oxf.), 2010, Vol. 200, p. 301-314.
http://hdl.handle.net/11104/0191533

Orchard C.H., Pásek M., Brette F.: The role of mammalian cardiac t-tubules in excitation-contraction coupling: experimental and computational approaches (review). Exp. Physiol., 2009, Vol. 94, p. 509-519.
http://hdl.handle.net/11104/0172083

Bébarová M., Matejovič P., Pásek M., Jansová D., Šimurdová M., Nováková M., Šimurda J.: Effect of antipsychotic drug perphenazine on fast sodium current and transient outward potassium current in rat ventricular myocytes. Naunyn-Schmied. Arch. Pharmacol., 2009, Vol. 380, p.125-133.
http://hdl.handle.net/11104/0176319

Pásek M., Šimurda J., Christé G., Orchard C. H.: Modelling the cardiac transverse-axial tubular system (review). Prog. Biophys. Mol. Biol., 2008, Vol. 96, p. 226-243.
http://hdl.handle.net/11104/0149122

Pásek M., Brette F., Nelson A., Pearce C., Qaiser A., Christé G., Orchard C.H.: Quantification of t-tubule area and protein distribution in rat cardiac ventricular myocytes. Prog. Biophys. Mol. Biol., 2008, Vol. 96, p. 244-257.
http://hdl.handle.net/11104/0149125

Pásek M., Šimurda J., Orchard C.H., Christé G.: A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system. Prog. Biophys. Mol. Biol., 2008, Vol. 96, p. 258-280.
http://hdl.handle.net/11104/0149124, Matlab code of the model

Christé G., Chahine M., Chevalier P., Pásek M.: Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3. Prog. Biophys. Mol. Biol., 2008, Vol. 96, p. 281-293.
http://hdl.handle.net/11104/0149126

Pásek M., Šimurda J., Christé G.: The functional role of cardiac T-tubules in a model of rat ventricular myocytes. Phil. Trans. R. Soc. A., 2006, Vol. 364, p. 1187-1206.
http://hdl.handle.net/11104/0135292, Matlab code of the model

Bébarová M., Matejovič P., Pásek M., Nováková M.: Effect of haloperidol on transient outward potassium current in rat ventricular myocytes. Eur. J. Pharm., 2006, Vol. 550, p. 15-23.
http://hdl.handle.net/11104/0136060

Bébarová M., Matejovič P., Pásek M., Šimurdová M., Šimurda J.: Effect of ajmaline on transient outward current in rat ventricular myocytes. Gen. Physiol. Biophys., 2005, Vol. 24, p. 27-45.

Bébarová M., Matejovič P., Pásek M., Šimurdová M., Šimurda J.: Effect of ajmaline on action potential and ionic currents in rat ventricular myocytes. Gen. Physiol. Biophys., 2005, Vol. 24, p. 311-325.

Pásek M., Šimurda J.: Quantitative modelling of interaction of propafenone with sodium channels in cardiac cells. Med. Biol. Eng. Comput., 2004, Vol. 42, p. 151-157.
http://hdl.handle.net/11104/0107406

Pásek M., Christé G., Šimurda J.: A Quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system. Gen. Physiol. Biophys., 2003, Vol. 22, p. 355-368.
http://hdl.handle.net/11104/0108060

Šimurda J., Šimurdová M., Pásek M., Bravený P.: Quantitative analysis of cardiac electrical restitution. Eur. Biophys. J., 2001, Vol. 30, p. 500-514.
http://hdl.handle.net/11104/0107452