Topical Problems of Fluid Mechanics


logo UT logo CTU logo MIO Universite logo ERCOFTAC
Institute of Thermomechanics AS CR, v.v.i. CTU in Prague Faculty of Mech. Engineering Dept. Tech. Mathematics MIO Université du Sud Toulon Var - AMU - CNRS - IRD Czech Pilot centre ERCOFTAC
Simulation of Transonic Flow Through a Mid-Span Turbine Blade Cascade with the Separation-Induced Transition

P. Straka, J. Příhoda, D. Fenderl

Abstract:
The paper deals with the numerical simulation of the transonic flow through a mid-span turbine blade cascade by means of an in-house code based on the EARSM turbulence model of Hellsten [1] completed by the algebraic transition model of Straka and Příhoda [2]. The simulation using the transition model of Langtry and Menter [3] and Menter et al. [4] implemented in the commercial code ANSYS Fluent was used for the comparison. Simulations were carried out for the transonic regime close to the nominal regime. The flow separation on the suction side of the blade is caused by the interaction of the reflected shock wave with the boundary layer. The attention was focused on the modelling of the transition in the separated flow especially on the modelling of the length of the transition region. Numerical results were compared with experimental results.

Keywords:
mid-section blade cascade, boundary layer transition, shock wave interaction
Fulltext: PDF
DOI: https://doi.org/10.14311/TPFM.2017.034
In Proceedings Topical Problems of Fluid Mechanics 2017, Prague, 2017 Edited by David Šimurda and Tomáš Bodnár, pp. 267-274
ISBN 978-80-87012-61-1 (Print)
ISSN 2336-5781 (Print)
imce   Powered by Imce 3.0  © 2014, Pavel Formánek, Institute of Thermomechanics AS CR, v.v.i. [generated: 0.0950s]