Institute of Thermomechanics of the Academy of Sciences of the Czech Republic

LABORATORY OF SURFACE TECHNOLOGY AND DEGRADATION OF MATERIALS

LEXICOAT

377 279 648 https://www.it.cas.cz Veleslavínova 71/11, Pilsen

2025

Laboratory of Surface Technologies and Degradation of materials in Pilsen

Modern approach to materials engineering and material degradation

Our focus

- Advanced technological processes: PVD, PA CVD, chemical-heat treatment.
- Testing the resistance of materials to mechanical, corrosion and thermal stress.
- Simulation of degradation processes to increase the lifetime of materials.
- FEM simulation and material models

Why us?

Extensive laboratory and machinery equipment

We use modern laboratories and advanced technological processes for surface treatment, degradation and analysis of materials, and more.

Expertise and experience

We have extensive experience with industrial research and development in the areas of energy, engineering, automotive, and healthcare.

Individual approach to partnership

ជជជ

QQQ

We collaborate with each partner on a tailormade basis and bring innovative solutions to ensure maximum satisfaction when solving a specific task.

Key Industrial Partners

Doosan Škoda Power, ŠKODA JS, Techniques Surfaces Czech Republic, voestalpine High Performance Metals CZ, CENTES, NAVEL, Advanced Metal Powders, VZÚ and others

Key laboratories and equipment

Technological laboratories

- Surface Treatment and Surface Modification Laboratory
- Chemical-heat Treatment Laboratory
- Laboratory of Materials Processing by Ageing Processes
- Heat Treatment Laboratory

Materials degradation laboratories

- Macromechanical Loading Laboratory
- Corrosion Degradation Laboratory
- Laboratory of Ageing of Polymer Materials

Analytical laboratories

- Materialographic Laboratory
- Laboratory for Evaluating the Properties and Behavior of Surface Layers
- Laboratory of Microscopic Methods

FEM simulation and material models

- Development and implementation of material models
- Finite element simulations of materials response to loading processes
- Prediction materials fractures

Workplace goal

development and implementation of advanced technological processes in the field of surface treatments using different technological processes PVD and PA CVD, chemical-heat treatment and heat treatment including ageing of material systems

testing the resistance and predicting the behavior of material systems in degradation processes induced by corrosion and chemical action, thermal effects, macro, micro and nano mechanical stress

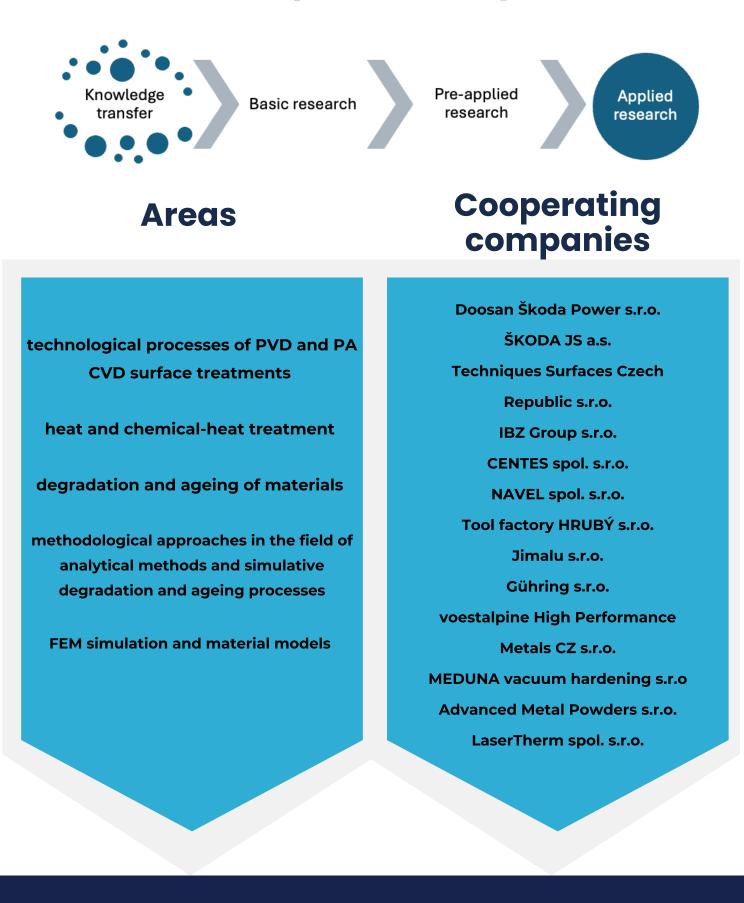
evaluation of initiation and development stages of degradation of material systems and complex properties and behavior of surface layers of material systems, microregions of materials and bulk materials of various structures

development of methodological procedures for evaluating the results of technological processes, properties and behavior of material systems with chemical-heat treatment, surface treatments and modifications, and material systems from degradation

and ageing processes

development of methodological procedures for setting degradation and ageing processes in correlation with operational stresses

FEM simulation and material models



Laboratory of Surface Technologies and Degradation of Materials in Pilsen

INSTITUTE OF THERMOMECHANICS OF THE ACADEMY OF SCIENCES OF THE CZECH REPUBLIC, V.V.I.

Workplace activity

Research focused on collaboration with practice

Energy

The area of turbine control elements and steam turbine blades, as well as the area of nuclear energy

Engineering

Area of production of tools, special components, heat treatment of products

Healthcare

Biocompatible and bioactive materials Area of polymer, composite and metal materials

Automotive

Special components with corrosion, temperature and mechanical stress

Applied research

Transfer of results from pre-applied and applied research

Practice

Project activity 2016-2019

•co-solver of the project Application No. <u>CZ.01.01.01/0.0/15_019/0004451</u> Thin film deposition - advanced tools and innovative technologies

2016-2022

•co-solver of the project Support of excellent research teams in priority axis no. <u>CZ.02.1.01/0.0/15_003/0000493</u> Centre of Excellence for Nonlinear Dynamic Behaviour of Advanced Materials in Engineering

2017-2019

•co-solver of the project Epsilon TA CR project no. <u>TH02010026</u> Development of new technologies for the production of progressive tools and components

2020-2022

•co-solver of the project Application no. <u>CZ.01.1.02/0.0/19_262/0000161</u> Optimalization of selected surface treatment of heat-resisting steel for specific operational conditions

2023-2024

•co-solver of the project Proof of concept no. <u>CZ.01.01.01/0.8/22_001/0000232</u> Feasibility study of ecological change of heat treatment by advanced technologies in correlation of qualitative changes of properties and ecological load

2023-2025

•co-solver of the project Application No. <u>CZ.01.01.01/0.1/22_002/0000357</u> Optimization of the chemical heat treatment of special stainless steel materials with a controlled structure from the point of view of the technological operating parameters of the surface treatment and base material systems

2023-2025

•co-solver of the project Application No. <u>CZ.01.01.01/0.1/22_002/0000358</u> Optimizing the production of special components from the point of view of forming technology and increasing resistance by surface treatments to the operating conditions of thermal and chemical loads

Technological processes HC490

low voltage reactive arc evaporation in vacuum

- according to the choice of material and structure properties of the cathode
- <u>according to the choice of process parameters</u>

surface treatments mainly based on Ti, Cr, Zr, Co nitrides:

binary nitrides TiN, CrN, ZrN, HfN, TaN, WN, VN, CoN, MoN... ternary nitrides TiAIN, TiSiN, CrAIN,CrSiN, TiNb, ZrNb.... quarternary nitrides TiAISiN, CrAISiN... quinary nitrides TiAINiSiN, CrAINiSiN...

chemical elements used to create surface treatments

Ti, Cr, Zr, Co, Mo, W, Ta, Hf, V, Al, Si, Nb, Ni, Cu, Ag

magnetron reactive sputtering in vacuum

chemical elements used to create surface treatments:

Ti, Cr, Zr, Co, Al, Si, Cu, Ni

chemical heat treatment of surfaces

plasma chemical reactions in gas and thin film deposition

ion implantation into the surface of materials

	6,94 3 Li	^{9,01} ₄ Be		alkalické	kovy alkalických	přechodné	kovy	polokovy	nekovy	halogeny	vzácné		10,81 5 B	12,01 6 C	14,01 7 N	16,00 8 0	19,00 9 F	20,18 10 Ne
	0,97 Lithium	1,50 Berylium		kovy	zemin	kovy	KOVY	polokovy	nekovy	naiogeny	plyny		2,00 Bor	2,50 Uhlik	3,10 Dusik	3,50 Kyslik	4,10 Fluor	Neon
F	22,99	24,31											26,98	28,09	30,97	32,06	35,45	39,95
	11Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 A	14Si	15 P	16 S	17 CI	18AI
	1,00 Sodik	1,20 Hořčík	III. B	IV.B	V.B	VI.B	VII.B	VIII.B	VIII.B	VIII.B	I.B	II.B	1,50 Hlinik	1,70 Křemík	2,10 Fosfor	2,40 Sira	2,80 Chlor	Argon
	39,10	40,08	44,96	47,88	50,94	52,00	54,94	55,85	58,93	58,69	63,55	65,38	69,72	72,61	74,92	78,96	79,90	83,80
	19 K	₂₀ Ca	21 SC	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 CO	28Ni	29 Cu	30Zn	зıGa	32Ge	33As	34Se	35Br	36 K
	0,91	1,00	1,20	1,30	1,50	1,60	1,60	1,60	1,70	1,70	1,70	1,70	1,80	2,00	2,20	2,50	2,70	
	Draslik 85,47	Vápnik 87,62	Skandium 88,91	Titan 91,22	Vanad 92,91	Chrom 95,94	Mangan ~98	2elezo 101,07	Kobalt 102,91	Nikl 106,42	Měď 107,87	Zinek 112,41	Gallium 114,82	Germanium 118,71	Arsen 121,75	Selen 127,60	Brom 126,90	Krypto 131,2
	37 Rb	38Sr	39Y	40Zr	41Nb	42MO	43TC	44Ru	45Rh	46Pd	47Ag	48Cd	49 In	50Sn	51 Sb	52Te		54X
																	53	54
	0,89 Rubidium	0,99 Stroncium	1,10 Yttrium	1,20 Zirkonium	1,20 Niobium	1,30 Molybden	1,40 Technecium	1,40 Ruthenium	1,40 Rhodium	1,30 Palladium	1,40 Stříbro	1,50 Kadmium	1,50 Indium	1,70 Cin	1,80 Antimon	2,00 Tellur	2,20 Jod	Xenor
	132,91	137,33		178,49	180,95	183,85	185,21	190,20	192,22	195,08	196,97	200,59	204,38	207,20	208,98	~209	~210	~222
	55 CS	56Ba		72 Hf	73 Ta	74 W	75 Re	76 O S	77 Ir	78Pt	79Au	ыHg	81 TI	82 Pb	83Bi	84 PO	85At	86 RI
	0,86	0,97		1,20	1,30	1,30	1,50	1,50	1,50	1,40	1,40	1,40	1,40	1,50	1,70	1,80	1,90	
	Cesium	Baryum		Hafnium	Tantal	Wolfram	Rhenium	Osmium	Iridium	Platina	Zlato	Rtut	Thallium	Olova	Bismut	Polonium	Astat	Rador
	~223	226,03		~267	~268	~269	~270	~269	~278	~281	~281	~285	~286	~289	~288	~293	~294	~294
	87 Fr	⁸⁸ Ra		104 Rf	105 Db	106 Sg	107 Bh	108HS	109Mt	110 DS	111Rg	112Cn	113 Nh	114 FI	115 MC	116 LV	117 TS	118
	0,86 Francium	0,97 Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium		Nihonium	Elerovium	Moscovium	Livermorium	Tennesine	Oganesi

Technological processes

Application directions

- \cdot increase in surface hardness
- improved friction resistance
- improved heat resistance
- improved corrosion resistance
- improved chemical resistance
- increased resistance to abrasion and erosion
 increased resistance to local fatigue
 achieving biocompatibility, bioactivity

Optimization of technological processes

temperature
working pressure
partial pressures of working and reactive gases
acceleration bias on deposited objects

current at the cathodes
controlled electromagnetic field or permanent magnetic field

process time in relation to other process parameters

power load target
and many other factors

Selection and optimization of surface treatments for selected applications

with high ter	Special materials for applications with high temperature and chemical loads							
1.4841 1.4828 1.4826	CSN 42 2951 1.4852 1.4980							
	naterials for the otive industry							
	4571 4541							
Special bec	Special bearing materials							
	3505 3520							
Special mat	erials for energy							

T5521.4913T6711.4923MLX171.4922

Heat and chemical-heat treatment

Application directions

increase in surface hardness
improved friction resistance
improved heat resistance
improved corrosion resistance
improved chemical resistance
increased resistance to abrasion and erosion
increased resistance to local fatigue

Optimization of heat treatment to achieve

different structure properties of products

entry into technological processes of surface treatments due to their optimization

Equipment

Annealing furnace

Annealing and hardening furnace

Circular furnace

Tube furnace

Muffle furnace

Liquid nitrogen and argon

Processes

Nitriding Cementation Carbonitriding Nitrocementation Boriding Annealing Hardening Temperature Ageing

Macromechanical testing

Methods of loading

Static loading – tension, compression, bending and torsion Cyclic overloading Low-cycle and high-cycle fatigue loading – tension, compression, torsion and bend Mechanical loading in a temperature chamber and with induction heating Mechanical loading at room temperature Mechanical loading in liquids

Application directions

verification of resistance to static loads verification of resistance to oscillating loads

Application

 Influence of surface treatments (PVD-ARC, magnetron, CHHT) Influence of heat treatment
 Influence of degradation processes corrosion, temperature load
 Effect of ageing of polymers and composites – temperature, humidity and radiation Machine

INSTITUTE OF THERMOMECHANICS OF THE ACADEMY OF SCIENCES OF THE CZECH REPUBLIC, V.V.I.

Polymer and composite materials

Ageing evaluation

- · Temperature ageing
- · Ageing due to humidity
- \cdot Evaluation of relaxation under pressure
- Evaluation of materials in the automotive, marine and railway industries
- \cdot Evaluation of materials in the field of cable insulation
- · Evaluation of sealing elements
- · Evaluation of materials for bio applications

Ageing testing

Various combinations

- sun radiation
- influence of defined humidity or showering
- influence of temperature by heating and beyond sun radiation

Approximation of real conditions

long-term effects of combined influences on polymer ageing

Monitoring the effect of sun radiation:

- For selected polymer materials
- For selected composite materials
- For surface treatments
- realized by technological processes

Other equipment

Drying rooms

Water baths

Corrosion resistance testing

Corrosion simulation

exposure to humidity
influence of humidity level
exposure to salt fog
water spray or saline spray tests
temperature effect

Testing in chambers with defined conditions

- saline
- selected acids (boric, oxalic, sulphuric,..)
- at room temperature
- at elevated temperature

Evaluation of corrosion initiation, corrosion development and analysis of corrosion protection possibilities

Devices

Corrosion chamber

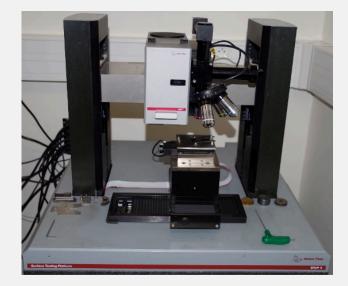
Cyclic voltametry

Salt and acid baths

Laboratory scales

Evaluation of mechanical properties and behavior of surface layers, surface layer basic material systems and material microregions

Measurement methods


- Static measurements in different modes
- Scratch measurements in different modes

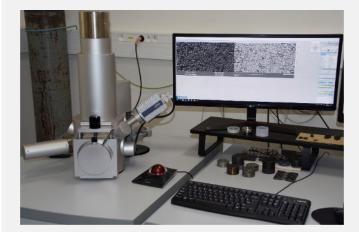
Evaluation

 Evaluation of hardness characteristics
 Evaluation of elastic-plastic behavior
 Evaluation of brittle fracture properties
 Evaluation of adhesive-cohesive
 behavior of systems surface treatment – basic material
 Evaluation of local fatigue properties
 Evaluation of friction properties and wear **Devices Inanoscratch tester**

Ernst hardness tester

Epuls

Application


• Evaluation of surface treatments from technological equipment with feedback

- Evaluation of chemical and heat treated surfaces with feedback
- Evaluation of changes after various heat treatments
 - Evaluation of changes after corrosion exposure
 - Evaluation of changes after long-term temperature exposure
- Evaluation of step changes after various ageing processes – temperature, humidity, radiation
 - Evaluation in small locations

Evaluation of surface morphology and fractures, structure, phase and chemical composition

Evaluation

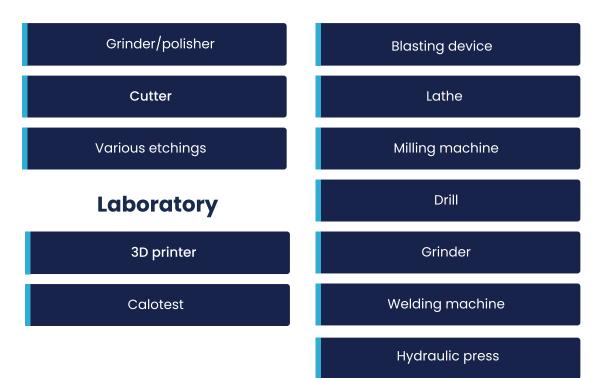
- Evaluation of morphology, structure, phase and chemical composition of basic bulk materials.
- Evaluation of materials after various heat treatments
 - Evaluation after various chemical-heat treatment of surfaces
 - Evaluation after various technological processes of deposition from HC490
- Evaluation after long-term temperature exposure
 - Evaluation after various corrosion and chemical tests
- · Evaluation after various ageing processes
- Evaluation of failures and fractures after mechanical load tests
 - Static
 - Quasi-static
 - Fatigue
- Evaluation after all types of indentation tests

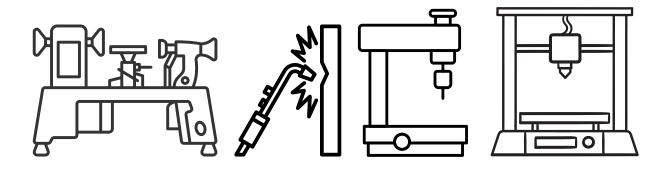
Devices

Scanning electron microscope and EDX microprobe

Light materialography microscope

Digital microscopy

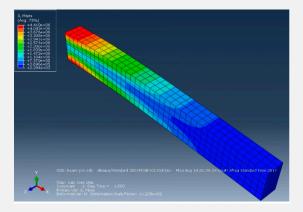

X-ray fluorescence



Other equipment

Materialography

Workshop



FEM simulation and material models

 1) development and implementation of material models
 2) finite element simulations of the response of materials to loading processes
 3) prediction of material failure

The central topic of the research is the development of constitutive models of materials. In particular, these are elastoplastic material models and models respecting the degradation of materials under the influence of loading and the surrounding environment. The designed material models are subsequently implemented in finite element software, which allows to simulate various behavior of materials. The performed numerical analyses focus both on the prediction of material failure and on the simulation of the response of materials during mechanical or thermal loading.

Software

Abaqus

Application

Automotive industry Mechanical engineering industry Construction industry Aerospace industry

Material models

General properties (density, damping, thermal expansion) Elastic properties (linear, nonlinear, viscoelasticity) Inelastic properties (plasticity, rubbers, betas..) Thermal properties Acoustic properties Hydrostatic fluid properties Equations of motion Volume diffusion properties Electrical properties Fluid flow properties Combined properties