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INTRODUCTION 

  

Transfer function of VT 
 
 – describe acoustic resonance 
properties of this filter:   
primary sound source --> voice sound 
radiated from the mouth. 
 
– dependent on boundary conditions 
(open x closed VF, closure done by 
soft tissue x hard wall). 
 
Modelling of these two problems 
properly resolved? 



 
METHODS 

  
 
 3D VT model created from CT 
examination of a female subject during 
phonation [a:], see [1]. 
  
 - simplified VT model with circular cross-
sections was 3D printed using an 
acoustically hard material.  
 

[1] Vampola T., Laukkanen A-M., Horáček J., Švec J.G.: Vocal tract changes caused by phonation into a tube: 
A case study using computer tomography and finite-element modeling. J. Acoust. Soc. Am. 129 (1), 2011, 
310-315. 



 
METHODS – MEASUREMENT SET UP 

  
 
 Volume velocity transfer function of the 
VT model was measured using the 
method described in [2]: 
- excitation of the VT model with an 

external sound source in front of the 
lips, 

- pressure P1 is measured at the closed 
glottis while the mouth is open, 

- pressure P3 is measured right in front 
of the closed lips. 

- P1/P3 = volume velocity transfer 
function U2/U1 

 

[2] Fleischer M., Mainka A., Kürbis S., Birkholz P.: How to precisely measure the volume velocity transfer 
function of physical vocal tract models by external excitation. PLoS ONE 13(3), 2018, e0193708. 



 
METHODS – MEASUREMENT SET UP 

  
 
 We applied the experimental method [2] 
using the the three-layer model of vocal 
folds (silicone Ecoflex 00-10). 
- Microphone probe inserted between 

the left and right part of VF model 
(connected to VT). 

- Transfer function measured for 
several conditions of VF filled either 
with pressurized air or water. 
 

- Loudspeaker 170 mm, 8 Ohm, 150 W, 
white noise signal. 

[2] Fleischer M., Mainka A., Kürbis S., Birkholz P.: How to precisely measure the volume velocity transfer 
function of physical vocal tract models by external excitation. PLoS ONE 13(3): e0193708. 



 
METHODS – MATHEMATICAL MODEL 

  
 
 
Wave equation of an acoustic duct 
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Transfer matrix of a conical acoustic duct 
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RESULTS 

  
 
 

• Spectra of pressure signals and the transfer function 
      - hard wall closure at the glottis 
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• The transfer function measured for different vocal folds stiffness 
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• The transfer function measured for different vocal folds stiffness 



 
DISCUSSION AND CONCLUSION 

  
The calculated and measured transfer function of VT model with 
“hard-walled vocal folds” was compared. Calculated resonance 
frequencies differ from the measured ones by less than 7.2 %.  
 
The stiffness and viscous properties of VFs can significantly change the 
VT frequency-modal and damping acoustic characteristics, especially in 
the frequency range above 2 kHz.  
 
In future work, this phenomenon should be modelled mathematically. 

The study was supported by a grant from the Czech Science Foundation: No. 24-11121S 
“Redistribution of acoustic energy output in human voice and its effect on vocal folds loading 
using computer and physical modeling,” 
and by the Academy of Finland (grant no. 356528). 
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Appendix - MEASUREMENT SET UP 

  
 
        1:1 scaled three layer vocal folds model 

Silicon rubber wedge (vocal fold body) 

Liquid layer (lamina propria) 

Thin silicon rubber cover 



 
Appendix - MEASUREMENT SET UP 

  
 
 

• Schema of the lungs model 

splitting of the airways  
up to the 
4th order branching 



Appendix - 1D modelling 
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Appendix - 1D modelling 

• 1D wave equation with variable cross-sectional area A(x) and viscous damping. 
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• Analytical solution in frequency domain for a conical shape element. 
• The form of transfer matrices for acoustic pressure p and volume velocity U.  
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Appendix - 1D modelling 

• Acoustic properties of the whole vocal tract 

• Acoustic radiation impedance 
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• Eigenfrequency calculation 
0=⋅− VTradAVT cZa⇒= 0GLOTU

• Acoustic pressure at the lips 
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