EXPERIMENTAL MODELLING OF THE INFLUENCE OF VOCAL FOLDS COMPLIANCE ON HUMAN VOCAL TRACT ACOUSTIC PROPERTIES

Vojtěch Radolf*, Jaromír Horáček*, Anne-Maria Laukkanen**

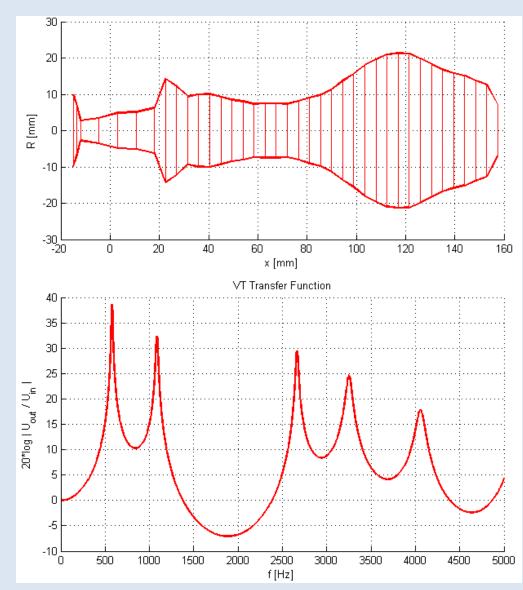
* Institute of Thermomechanics, Academy of Sciences, Prague, Czech Republic

** Speech and Voice Research Laboratory, Tampere University, Tampere, Finland

INTRODUCTION

Transfer function of VT

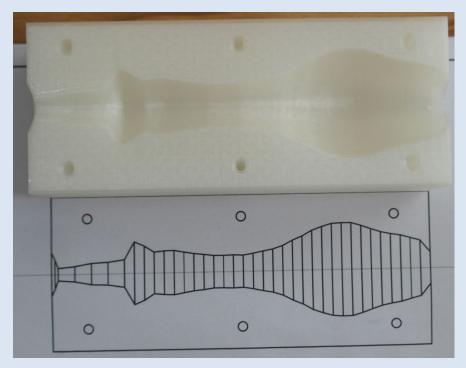
- describe acoustic resonance
 properties of this filter:
 primary sound source --> voice sound
 radiated from the mouth.
- dependent on boundary conditions
 (open x closed VF, closure done by soft tissue x hard wall).
- Modelling of these two problems properly resolved?



METHODS

3D VT model created from CT examination of a female subject during phonation [a:], see [1].

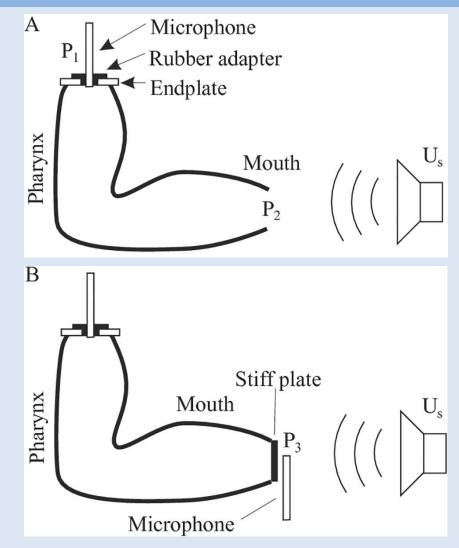
- simplified VT model with circular crosssections was 3D printed using an acoustically hard material.



[1] Vampola T., Laukkanen A-M., Horáček J., Švec J.G.: Vocal tract changes caused by phonation into a tube: A case study using computer tomography and finite-element modeling. J. Acoust. Soc. Am. 129 (1), 2011, 310-315.

METHODS – MEASUREMENT SET UP

- Volume velocity transfer function of the VT model was measured using the method described in [2]:
- excitation of the VT model with an external sound source in front of the lips,
- pressure P_1 is measured at the closed glottis while the mouth is open,
- pressure P_3 is measured right in front of the closed lips.
- P_1/P_3 = volume velocity transfer function U_2/U_1

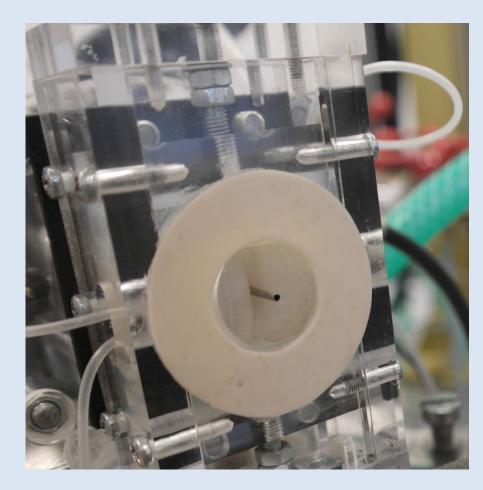


[2] Fleischer M., Mainka A., Kürbis S., Birkholz P.: How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation. PLoS ONE 13(3), 2018, e0193708.

METHODS – MEASUREMENT SET UP

We applied the experimental method [2] using the three-layer model of vocal folds (silicone Ecoflex 00-10).

- Microphone probe inserted between the left and right part of VF model (connected to VT).
- Transfer function measured for several conditions of VF filled either with pressurized air or water.
- Loudspeaker 170 mm, 8 Ohm, 150 W, white noise signal.



[2] Fleischer M., Mainka A., Kürbis S., Birkholz P.: How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation. PLoS ONE 13(3): e0193708.

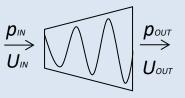
METHODS – MATHEMATICAL MODEL

Wave equation of an acoustic duct

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{1}{A} \cdot \frac{\partial A}{\partial x} \cdot \frac{\partial \phi}{\partial x} - \frac{1}{c_0^2} \cdot \left(\frac{\partial^2 \phi}{\partial t^2} + \frac{r_s}{\rho} \cdot \frac{\partial \phi}{\partial t} \right) = 0$$

Transfer matrix of a conical acoustic duct

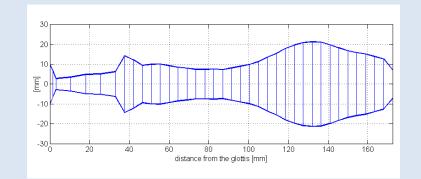
$$\begin{bmatrix} p_{OUT} \\ U_{OUT} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} p_{IN} \\ U_{IN} \end{bmatrix}$$



Transfer matrix of the vocal tract

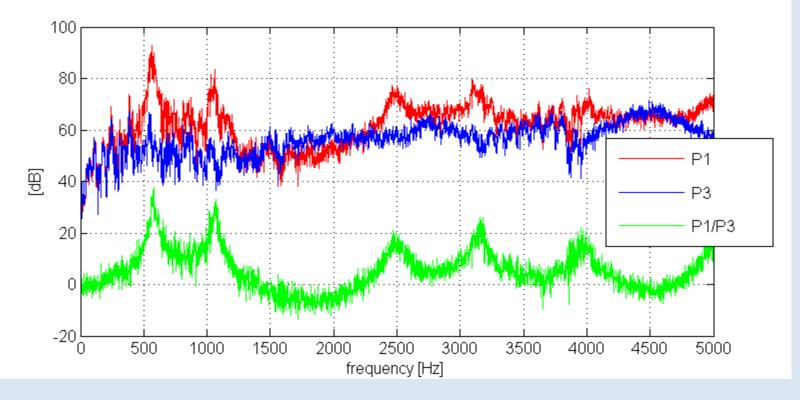
$$\begin{bmatrix} p_{LIP} \\ U_{LIP} \end{bmatrix} = \mathbf{T}_{VT} \cdot \begin{bmatrix} p_{GLOT} \\ U_{GLOT} \end{bmatrix}$$

$$\mathbf{T}_{VT} = \begin{bmatrix} a_{VT} & b_{VT} \\ c_{VT} & d_{VT} \end{bmatrix} = \mathbf{T}_{N_e+1, N_e} \cdot \mathbf{T}_{N_e, N_e-1} \cdot \dots \cdot \mathbf{T}_{3, 2} \cdot \mathbf{T}_{2, 1}$$

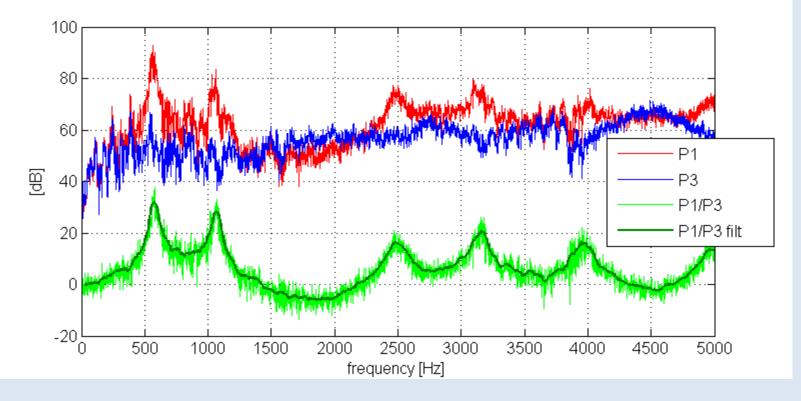


• Spectra of pressure signals and the transfer function

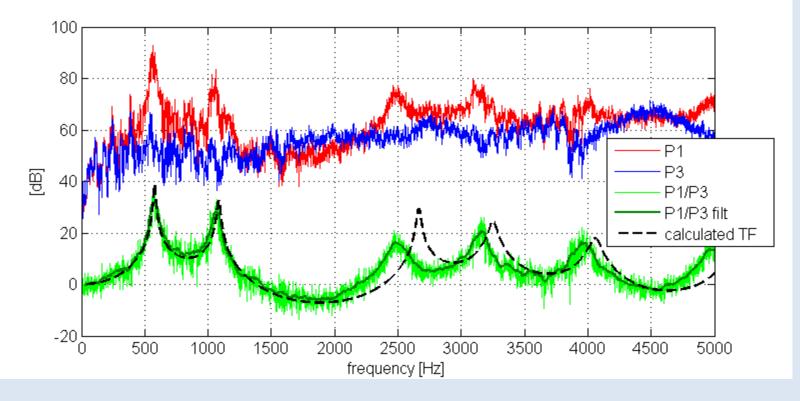
- hard wall closure at the glottis

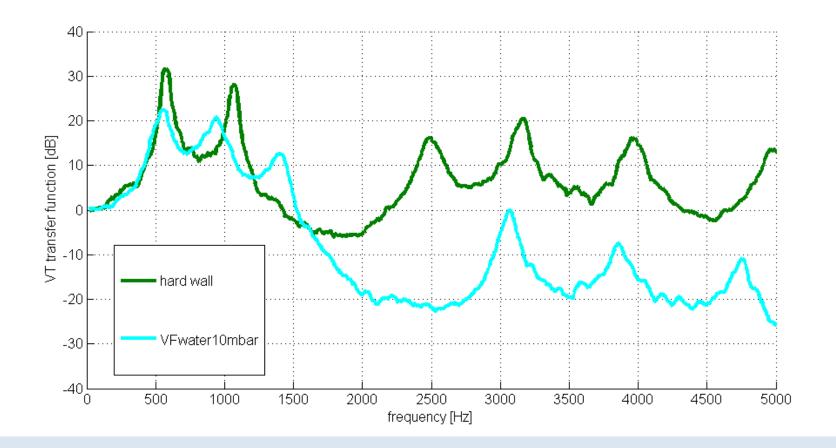


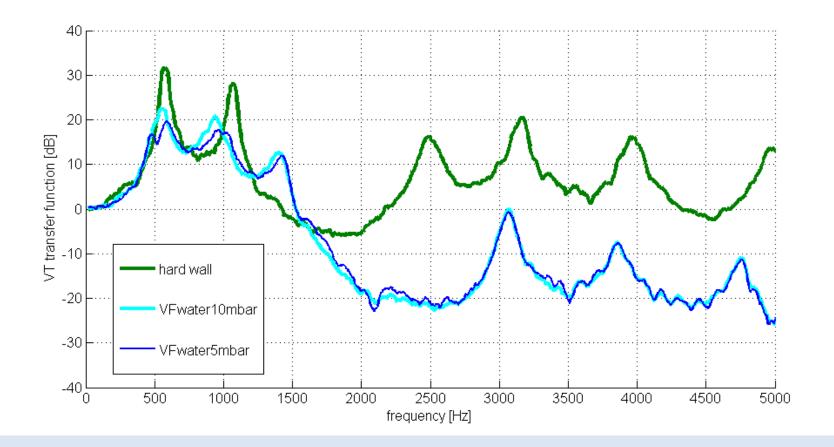
- Spectra of pressure signals and the transfer function
 - hard wall closure at the glottis

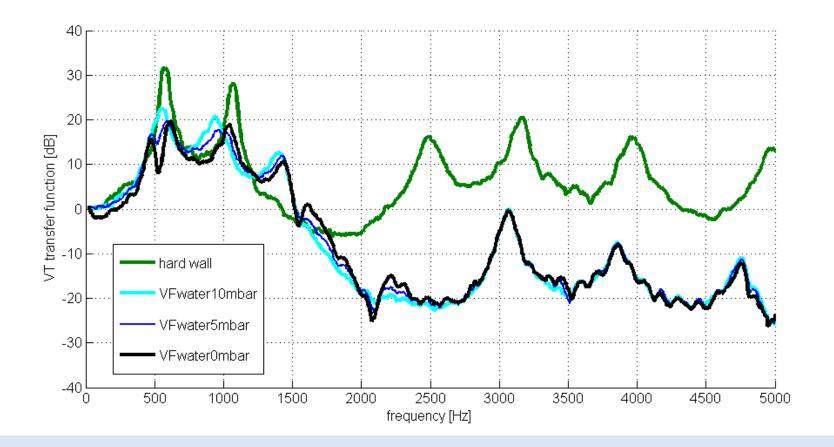


- Spectra of pressure signals and the transfer function
 - hard wall closure at the glottis

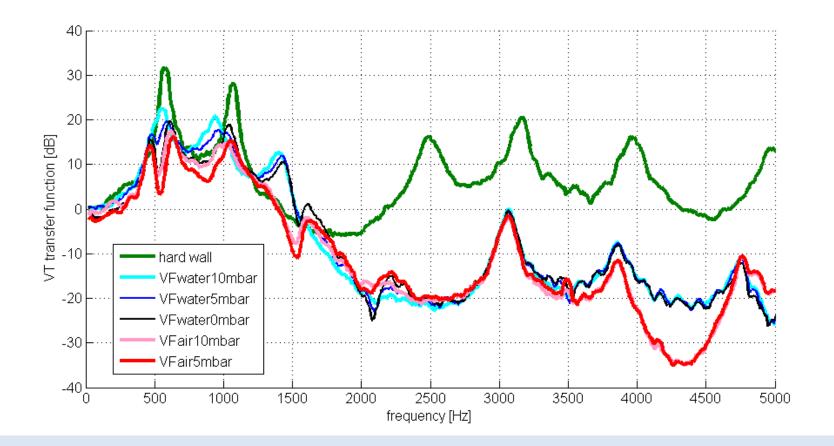


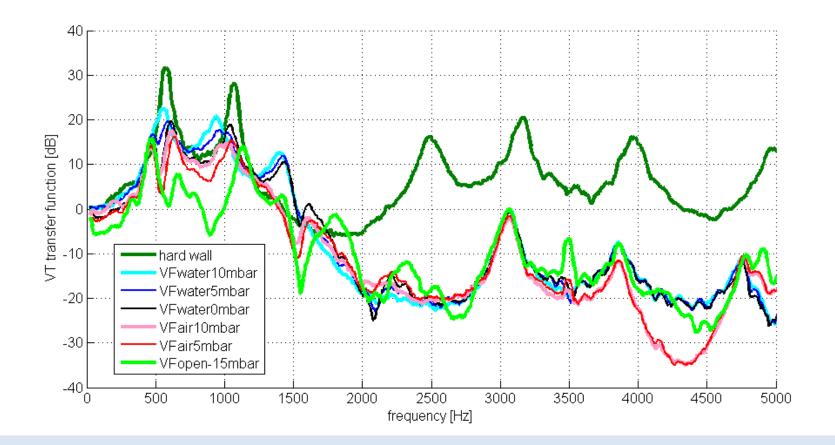












DISCUSSION AND CONCLUSION

The calculated and measured transfer function of VT model with "hard-walled vocal folds" was compared. Calculated resonance frequencies differ from the measured ones by less than 7.2 %.

The stiffness and viscous properties of VFs can significantly change the VT frequency-modal and damping acoustic characteristics, especially in the frequency range above 2 kHz.

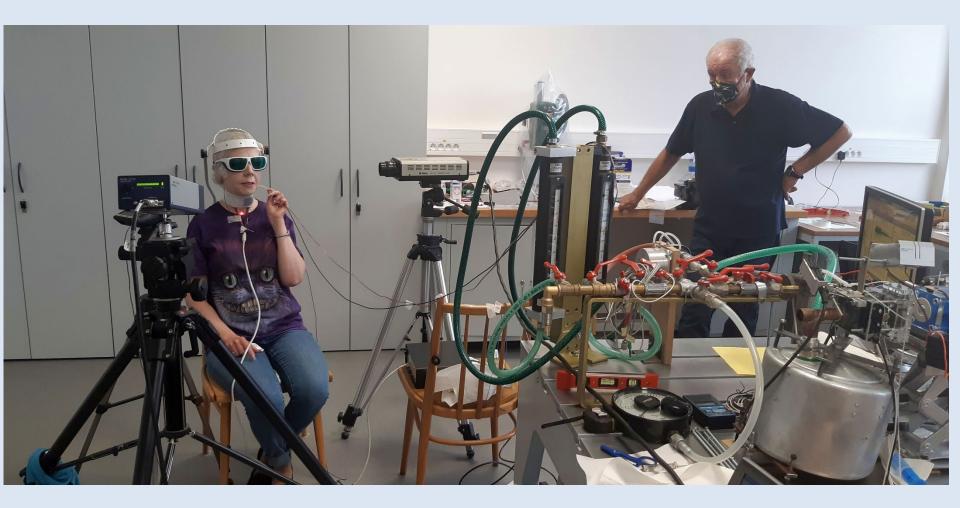
In future work, this phenomenon should be modelled mathematically.

The study was supported by a grant from the Czech Science Foundation: No. 24-11121S "Redistribution of acoustic energy output in human voice and its effect on vocal folds loading using computer and physical modeling," and by the Academy of Finland (grant no. 356528).

GREETINGS FROM CO-AUTHORS

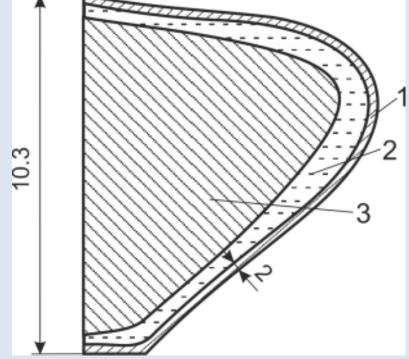
Anne-Maria Laukkanen

Jaromír Horáček



Appendix - MEASUREMENT SET UP

1:1 scaled three layer vocal folds model



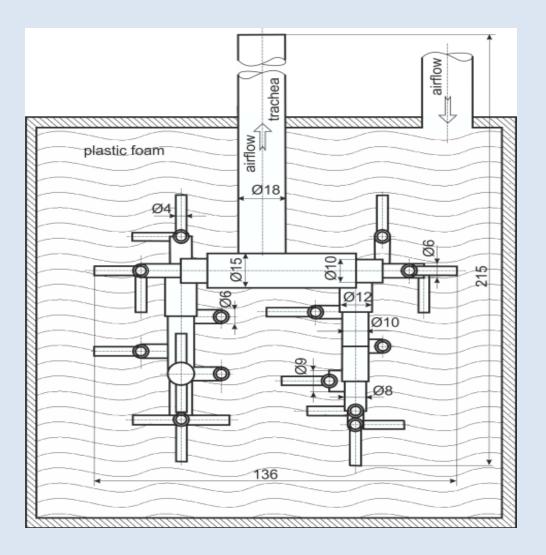
1 Thin silicon rubber cover

Liquid layer (lamina propria)

Silicon rubber wedge (vocal fold body)

Appendix - MEASUREMENT SET UP

• Schema of the lungs model



splitting of the airways up to the 4th order branching

Appendix - 1D modelling

• Wave equation of an acoustic duct with a variable cross section A(x)

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{1}{A} \frac{\partial A}{\partial x} \frac{\partial \phi}{\partial x} - \frac{1}{c_0^2} \left(\frac{\partial^2 \phi}{\partial t^2} + \frac{r_s}{\rho} \frac{\partial \phi}{\partial t} \right) = 0$$

- velocity potential
- speed of sound
- specific acoustic resistance
- fluid density
- fluid dynamic viscosity
- frequency
- acoustic pressure
- acoustic velocity
- volume velocity

$$\phi \qquad [m^{2} s^{-1}] \\ c_{0} \qquad [ms^{-1}] \\ r_{s} = 2\pi \sqrt{f\mu\rho/A} \qquad [kg m^{-3} s^{-1}] \\ \rho \qquad [kg m^{-3}] \\ \mu \qquad [kg m^{-1} s^{-1}] \\ f \qquad [Hz]$$

$$p = -\rho \frac{\partial \phi}{\partial t} - r_{s} \phi \qquad [kg m^{-1} s^{-2} = Pa]$$
$$v = \frac{\partial \phi}{\partial x} \qquad [ms^{-1}]$$
$$U = vA \qquad [m^{3} s^{-1}]$$

Appendix - 1D modelling

• 1D wave equation with variable cross-sectional area A(x) and viscous damping.

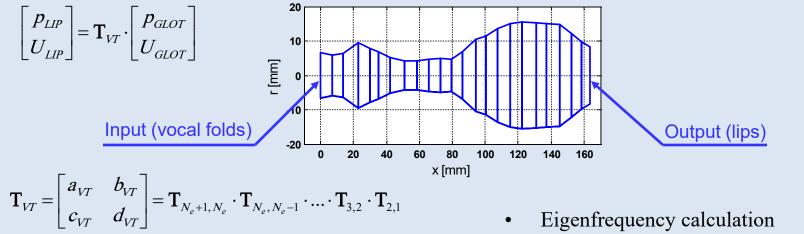
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{1}{A} \cdot \frac{\partial A}{\partial x} \cdot \frac{\partial \phi}{\partial x} - \frac{1}{c_0^2} \cdot \left(\frac{\partial^2 \phi}{\partial t^2} + c_0 \cdot r_N \cdot \frac{\partial \phi}{\partial t} \right) = 0$$

- Analytical solution in frequency domain for a conical shape element.
- The form of transfer matrices for acoustic pressure *p* and volume velocity *U*.

$$\begin{bmatrix} p_{OUT} \\ U_{OUT} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} p_{IN} \\ U_{IN} \end{bmatrix} \quad (\text{Radolf, 2010}) \quad p_{IN} \\ (\text{Leino et al., 2011}) \quad p_{IN} \end{bmatrix} \qquad p_{OUT} \\ = \frac{\xi_0}{\xi_0 + L} \cdot \left(\cosh(\gamma L) + \frac{1}{\gamma \xi_0} \cdot \sinh(\gamma L) \right) \\ b = -\frac{z_0 \left(r_N + jk \right) \cdot \xi_0}{A_{IN} \cdot \gamma \left(\xi_0 + L \right)} \cdot \sinh(\gamma L) \qquad \xi_0 = \frac{R_{IN}}{R_{OUT} - R_{IN}} \cdot L \qquad \gamma = \alpha + j\beta \\ c = A_{OUT} \cdot \frac{\left(1 - \gamma^2 \xi_0 \left(\xi_0 + L \right) \right) \cdot \sinh(\gamma L) - \gamma L \cdot \cosh(\gamma L)}{\gamma \left(\xi_0 + L \right)^2 \cdot z_0 \left(r_N + jk \right)} \qquad r_N = \frac{1}{R} \cdot \sqrt{2k\mu/c_0\rho_0} \qquad \alpha = \frac{r_N}{\sqrt{2 + 2 \cdot \sqrt{1 + \left(r_N / k \right)^2}}} \\ d = \frac{A_{OUT}}{A_{IN}} \frac{\xi_0}{\xi_0 + L} \cdot \left(\cosh(\gamma L) - \frac{1}{\gamma \left(\xi_0 + L \right)} \cdot \sinh(\gamma L) \right) \qquad k = \omega/c_0 \qquad \beta = \frac{k}{2} \cdot \sqrt{2 + 2 \cdot \sqrt{1 + \left(r_N / k \right)^2}} \\ \end{bmatrix}$$

Appendix - 1D modelling

Acoustic properties of the whole vocal tract



• Acoustic radiation impedance

$$Z_{Arad} = \frac{c_0 \rho_0}{\pi R^2} \cdot \left[1 - \frac{J_1(2kR)}{kR} + j \frac{H_1(2kR)}{kR} \right] = \frac{p_{LIP}}{U_{LIP}}$$

(Škvor 2001)

- Eigenfrequency calculation $U_{GLOT} = 0 \implies a_{VT} - Z_{A rad} \cdot c_{VT} = 0$
- Acoustic pressure at the lips

$$p_{LIP} = \frac{a_{VT} \cdot d_{VT} - b_{VT} \cdot c_{VT}}{a_{VT} - Z_{Arad} \cdot c_{VT}} \cdot Z_{Arad} \cdot U_{GLOT}$$