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Ideas of incremental plasticity
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Ideas of incremental plasticity

Yield condition ... substituting
F(o)=|o|—0oy =0 sgn|o| E(é — é’) =0
Flow rule sgn|o| B¢ — EA =0
e’ =Asgnlo|, A>0 Hence
Consistency condition N Al
(o) =sgnlo|d =0 e

Hooke's law

o= Ele — é) Elastic unloading

A e
(additive decomposition used) it oe<0, wese 0
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Hooke’s law revisited

General formulation

055 = Uijkl€kl

Symmetries
14>9, k<l, 15—kl

Positive definiteness
Ve 7é 0: Eijcijklekl > 0
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Hooke’s law revisited

General formulation

055 = Uijkl€kl

Symmetries
14>9, k<l, 15—kl

Positive definiteness
Ve 7é 0: Eijcijklekl > 0

Isotropy
S = 2G(e — €,1) and O — e, ,

where B B
and K=—"—"-—+
2(1 4+ v) 3(1 —2v)

G =
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Incremental model

Yield condition
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Flow rule
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Incremental model

Yield condition
F(O'Z'j> = O

Flow rule

Consistency condition

oF

——0 = 0
8@7 /

i (o
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Incremental model

Yield condition
F(O'Z'j> = O

Flow rule

Consistency condition

oF

F(O’Z’j> = %Uz’j =0
)

Hooke's law

0ij = Cijri(er — €py)
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Incremental model

Yield condition
F(O’Z’j) = O

Flow rule

Consistency condition

oF

F(O’Z’j> = ggi]’ =0
)

Hooke's law

0ij = Cijri(er — €py)

... substituting

oF

—Cijki(érs — ARk) =0

802-3-



Institute of Thermomechanics

Incremental model

Yield condition ... substituting
OF
F(Oij) =0 —Cijkl(ékl = >\Rkl) =0
aO'Z'j
Flow rule
e ) >0 RS
oF ,
Consistency condition Tcijklekl
A= == > 0
: OF OF -
) ij) = 50 =0 =7 rers
(045) 8J¢jaj 0o,y
Hooke's law

0ij = Cijri(er — €py)
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Associated flow rule

Necessary condition

OF
%C'jklel > 0
ij
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Associated flow rule

Necessary condition

OF
dor ki

Corollary

R = function( VF')
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Associated flow rule

Necessary condition

OF
WOZWRM > 0
ij
Corollary
R = function( VF")
Association

oF

802~j

Rij =

Note: AFR always meets the necessary condition as C is sym+def.
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Associated flow rule

Necessary condition

OF
Tl kil
Corollary
R = function( VF")
Association
oOF
e—
/ 802~j
Alternatively
oOF

@R — (interesting possibility)

(90'2']'

Note: AFR always meets the necessary condition as C is sym+def.
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Jo-theory

Effective stress

g = \/3Jy = \/ %SZJSZJ
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Jo-theory

Effective stress

e \/ 3J2 =1/ %SZJS”
Association
00, _35,

@aij u % O¢

Rz‘j =
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Jo-theory

Effective stress

g = \/3Jy = \/ %SZJSZJ

Association

do.
Rij=—

B 35

6’02-]'

20,

(deviatoric)



Institute of Thermomechanics

Jo-theory
Effective stress OF . 15645
ﬁCZy‘szkz = 3G a] g
e \/ 3J2 =1/ %SZJSZJ Y g
Association a—FCpqma—F =3G >0
do. 35, g 00rs
R;: = e -~ Tt
/ 6’02-]' 2 O¢
Flow rule
: 3\ .
€ = 50—(35@ (deviatoric)
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Jo-theory

Effective stress

g = \/3Jy = \/ %SZJSZJ

Association
oo 3.5,
R;: = e Tt
! 6’02-]' 2 O¢
Flow rule
3\
€ = 50—(35@ (deviatoric)

OF S;i€;i
— G A
(90@']’ Oy
oF oF
—Cyps—— = 3G > 0
Dapy 00,

Plastic strain increment

S. o :
A=
oy
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Jo-theory

Effective stress

e \/ SJQ =1/ %S@jsij

Association
R" N 80'6 B 352']‘
. 8aij u 2 O¢
Flow rule
3\
€ = éa—esij (deviatoric)

OF S
—Cijipién = 3G A
(%ij (A%
OF oOF
—Chyrs=—— =3G >0
Dapy 00,

Plastic strain increment

;60 .
A= efj
oy

Stress increment

Mo R -p
Gi5 = 04; — 2Gé€;;
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Jo-theory

Effective stress

e \/ SJQ =1/ %S@jsij

Association
R" N 80'6 B 352']‘
. 8aij u 2 O¢
Flow rule
3\
€ = éa—esij (deviatoric)

OF S
—Cijipién = 3G A
(%ij (A%
OF oOF
—Chyrs=—— =3G >0
Dapy 00,

Plastic strain increment

;60 .
A= efj
oy

Stress increment

Mo R -p
Gi5 = 04; — 2Gé€;;

Remark: Note that S;;¢;; may be regarded as distortional power density.
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Barré de Saint-Vénant & Lévy (1870)

Tresca criterion
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Barré de Saint-Vénant & Lévy (1870)

Tresca criterion
01— 03 < oy

Viscous stress
o = 2L€

Incompressibility
Emn=0 = o=8

Hence

5 (for total strain)

e Weinferby ¢ =0 = o =0 = €° = 0 that elastic strain is omitted,
therefore this theory is only good for steady state flow.
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Von Mises (1913)

e Same concept used but for the yield criterion

Valsl < oy

also supported by Huber (1904) and Hencky (1924).
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e Same concept used but for the yield criterion

Valsl < oy

also supported by Huber (1904) and Hencky (1924).

e |t was discovered by Drucker much later (in 1956) that the deviatoric flow rule
was incompatible with the Tresca criterion but worked well with the von Mises
one. lt, thus, transpired that von Mises had accidentally stumbled on the right
solution!
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Von Mises (1913)

e Same concept used but for the yield criterion

V2SI < oy

also supported by Huber (1904) and Hencky (1924).

e |t was discovered by Drucker much later (in 1956) that the deviatoric flow rule
was incompatible with the Tresca criterion but worked well with the von Mises
one. lt, thus, transpired that von Mises had accidentally stumbled on the right
solution!

e The flow rule é;; = S;;/2p is called today the Vénant-Lévy-Mises equation.
Still, as we know already, it is incomplete.
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Prandtl-Reuss (1930)

e |t was Reuss who, finally, included elastic strain via the additive decomposition
so that only the plastic part would then be computed from VLM equation as

€ = i (for plastic strain)
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Prandtl-Reuss (1930)

e |t was Reuss who, finally, included elastic strain via the additive decomposition

so that only the plastic part would then be computed from VLM equation as

20 »
€5 = ApSij

(for plastic strain)

e This, in fact, corresponds to Jo-theory with A, = 3)\/20, substituted. Either
of the multipliers A or A, can be determined from the consistency condition to

the exact same result.



