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BTσ dV = δuTR for ∀δu

Nodal equilibrium

∫
V

BTσ dV = R
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Weak formulation (2/2)

Elasticity

σ = Cε = CBu

. . . inserting into equilibrium equation(∫
V

BTCB dV
)

︸ ︷︷ ︸
K

u = R

Plasticity (∫
V

BTCepB dV
)

︸ ︷︷ ︸
KT

u̇ = Ṙ

Remark : KT symmetric only for the associated flow rule!



Solution algorithm

INPUT: u0 = elastic solution

1. εn = Bun for all element’s internal points



Solution algorithm

INPUT: u0 = elastic solution

1. εn = Bun for all element’s internal points

2. εn → σn (numerical integration)



Solution algorithm

INPUT: u0 = elastic solution

1. εn = Bun for all element’s internal points

2. εn → σn (numerical integration)

3. If

∫
V

BTσn dV = R → EXIT



Solution algorithm

INPUT: u0 = elastic solution

1. εn = Bun for all element’s internal points

2. εn → σn (numerical integration)

3. If

∫
V

BTσn dV = R → EXIT

4. Find un+1 → goto 1.



Solution algorithm

INPUT: u0 = elastic solution

1. εn = Bun for all element’s internal points

2. εn → σn (numerical integration)

3. If

∫
V

BTσn dV = R → EXIT

4. Find un+1 → goto 1.

Remarks:

• Symmetry of KT is required by the Newton-Raphson procedure.

• BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is extremely effective.



Numerical example

Plešek, J.: Numerical analysis of a notched inelastic specimen and comparison with

experimental results. Comp. Struct., 48, No. 3, pp. 523–528, 1993.
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Notched specimen

Importance of stress concentration α = 3 (same as for a hole) in engineering:

σres
max = σY − ασnom

D = σY − α
σY
k

= σY (1−
α

k
)

since the stress state is nearly uniaxial at the root of the notch. Therefore

κ =
α

k
' 2

narrowly meeting the shakedown condition.

Material data: σY = 505MPa, σD = σY /1.5 = 337MPa

Loading: σnom = 350MPa > 337MPa (small scale cyclic plasticity expected)
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VOLUMETRIC LOCKING









(c) Displacement-based element solution results for the case Poisson's ratio 

L 





Integrating stiff systems

Plešek, J., Korouš, J.: Explicit integration method with time step control for vis-

coplasticity and creep. Adv. Engrg. Software, 33, No. 7–10, pp. 621–630, 2002.
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Stress history at a Gausspoint 

~ * ~ 2 x 2 r u l e 3x3 rule unstable 

300 



Figuře 4: History of the optimised time step for a) 2 x 2 and b) 3 x 3 quadrature rules. Horizontál dashed line depicts 
the critical time step obtained from Cormeaus' formuía ( A t c r « = 177.33 hrs). 



CONSISTENT TANGENT OPERATORS
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