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For symmetry, R = g.

Remark: UMAT output to enter the Newton-Raphson procedure.
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• Plešek, J.: Numerická integrace konstitutivńıch vztahů. Inž. mech., 6, No. 1, pp. 3–24,
1999.

• Plešek, J., Kř́ıstek, A.: Assessment of methods for locating the point of initial yield. Comp.
Meth. Appl. Mech. Engrg., 141, pp. 389–397, 1997.
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• Lambert, J.D.: Numerical Methods for Ordinary Differential Systems.

Wiley, ISBN 0–471–92990–5, Chichester 1993.
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Euler backward

yn+1 = yn + ẏn+1∆t = yn + λyn+1∆t

Recurrent formula

yn+1 =
yn

1− λ∆t

The Euler backward method is said to be unconditionally stable.

• Both methods have the same (first order or linear) accuracy, the only difference

being their stability.
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A less known deficiency

Fixed point iteration

y
(i+1)
n+1 = yn + λy

(i)
n+1∆t

Spectral radius

|λ∆t| < 1

Convergence condition

∆t <
1

|λ|
=

1

2
∆tcrit

Remark: The critical time step is half the size of that of the Euler forward method!
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Plasticity equations

σ̇ = r(σ, t)

may, first, be linearized as Error → 0 and, second, decoupled by the spectral

decomposition to obtain

J =
∂r

∂σ
and |λ|max = max

i
|λi|

A-stability condition

∆t <
2

|λ|max

B-stability would treat the former fully non-linear operator r.

Remark: |λ|max is seldom known beforehand, leaving us with experimentation.
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• One boast of implicit schemes is the built in early warning mechanism triggered

by the divergence of the inner iteration loop. This is usually dealt with by

halving the integration step. The integration is, thus, less efficient but able to

run in a fully automated mode.


