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Review

Yield function

F (σij) = f (σij)− σY ≤ 0

Noteworthy properties

• Convexity

• Hydrostatic sensitivity

• Tension versus compression
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S = σ − σmI

Theorem of zero trace
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3
(1 + 1 + 1) = 0

Deviatoric split

F (σij) = F (Sij, σm)
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Effect of pressure variation

Let σ̂ = σ − pI ⇒ σ̂m = σm − p

Deviatoric stress

Ŝ = σ̂ − σ̂mI = σ − pI− (σm − p)I = σ − σmI = S

Thus we have

F (σ̂ij) = F (Sij, σm − p)

Deviatoric functions

F (Sij) = f (Sij)− σY

Example: Tresca’s effective stress

τe = σ1 − σ3 = S1 + σm − (S3 + σm) = S1 − S3
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Mechanism of plastic slip
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• Plastic strain is permanent.

ε = εp + εe

is called additive decomposition.

• Plastic flow preserves volume.

εp11 + εp22 + εp33 = 0

therefore εp is a deviatoric tensor.

• Elastic constants E, ν are independent of

plastic strain.

• Hydrostatic pressure acting alone does

not cause yielding. It may, though, in-

fluence the magnitude of σY .

• Metals are generally insensitive to p.

• Slip stress may or might not be influenced

by the normal force (not shown in figure).
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Von Mises’ criterion (1913)

1. Hypothesis

Pressure independence.

2. Formulation

‖S‖ ≤ const.

3. Calibration: tensile test

S =

 2
3σ 0 0
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4. Prediction: pure shear

σe =
√

3
2(2τ
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3 |τ | ≤ σY
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5. Validation (next lecture)
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Hydrostatic modification

Including the mean stress

F (σij) = f (Sij) + ασm − σY

where α is the dilatancy parameter.

Examples:

• Tresca ⇒ Mohr-Coulomb

• von Mises ⇒ Drucker-Prager

• Hill ⇒ Caddell-Raghava-Atkins

In general, we keep the deviatoric and hydrostatic variables separated.

Note: The yield stress σY is still a material constant (not variable).
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Conclusion: If normal stress plays no role, then σY c = σY t.
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• We know that for Tresca and von Mises criteria σY c = σY t = σY .

• Denote τSY = σY /2 the resolved shear stress at yield (acting in combination

with normal stress).

• Let τY be the yield stress at shear (under pure shear conditions).

Tresca

τY =
σY
2

= τSY

von Mises

τY =
σY√
3
=

2√
3
τSY > τSY

Conclusion: The presence of normal stress decreases τSY for von Mises’ condition.


