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Problem definition

Proportional loading
b=ab’, t=at’

Find the load factor v, such that

b? = a,b’, t’=a,t’ (all loads stationary)

Assumptions
e Perfect plasticity.
e Yield function is convex.

e Associated flow rule.
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Weak formulation

SAS: Statically admissible set {o,b,t} satisfies
oy om0 in ! and o;n;=%onl

We relax on F'(0;;) < 0 at this point.

KAS: Kinematically admissible set {€,u} satisfies

€ij = %(Um’ + Uj,i) in €2
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Remark: The principle of virtual work can now be derived.
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Stress field at collapse

Lemma: In collapsing structures stress field stays stationary.

SAS: solution {o,b,t} = {&,B =0t = 0} is also admissible
KAS: solution {é,11}

SAS+KAS
/%élj dv :/bmid+/iiui dS =0
Q Q r

Khun-Tucker condition

- Non :
O'Z'jé’?j = Oij)\@Tij =AF =0

Consequently

/ O"Z'jéfj dV = / Oijklélegléfj dV =0
Q Q

But C’ijklézléfj > (), therefore . — 0;; =0 in 9
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Admissible stress method (1/3)

Theorem: The admissible stress method yields a lower bound estimate.
SAS*: approximation {a'*,oz;bo,oz;to}
e Find any admissible set {o",b’ t}
o Let o = sup{ar| F(ao’) < 0in Q}
(in fact vy = oy /f(o") at the most stressed point)

e Denote o* = oz;a'o

In addition we define:
SAS: solution {o,a,b",a,t"}
KAS: solution {€&,11}
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Admissible stress method (2/3)

SAS*+KAS

/ op€i AV = o / bii; dV + / tyu; dS
Q Q I'
SAS+KAS

Q Q I

Subtracting and using the Lemma

—/ o el dV—— awep %

171
QP

Plastic zone

Q, ={Vx € Q] €é'(x) # 0}
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Admissible stress method (3/3)

Thus
/ O-ijéfj dV
o _ Jo,
/2 / 0, € dV
QP
We show that
0ijé;; = 01;€;;  everywhere
This will prove
*
Qp 2>

stress space F—

convexity condition:

(0ij — O-;kj)éfj =
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Principle of virtual work (1/3)

Theorem: The principle of virtual work yields an upper bound estimate.
KAS*: approximation {€", 0"}
e Motivated by the Lemma we denote

Q, = {Vx € Q| €(x) # 0}

e Inverse problem: € || VF' = o, such that F(0*) =0 in

e Dissipation

i ko -k
D = Gric . dV
L

e The PVW method

D:W*:a;/bgu;‘d‘/—l—cu;/t?u;kds = a
Q r

p
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Principle of virtual work (2/3)

In addition we define;
SAS: solution {a,apbo,apto}

SAS+KAS*

/ g€ AV = ap / Blur dV + oy / tdur dS
Q Q r

Comparing against the PVW estimate

1 , 1
— | o04€,dV =—D
o =) o

p JOF D

where the integration domain could safely be reduced to (2.
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Principle of virtual work (3/3)

Thus
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Principle of virtual work (3/3)

Thus

We show that

0;;€;; = 0ij€;;  everywhere

This will prove

= x
'V
Q
=

stress space

=0

convexity condition:
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