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Question: Equilibrium versus BM equation?
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Critical state

N1 = N3 < N2 = Ncrit ⇒ Fcrit = Ncrit(1 + 2 cos3 α)

Remark: Independence on E, A, l. We speak about a universal solution.



Brittle fracture

J
J
J
J
J
J
J
J

b b

b


















b
1 2 3

?

F

�A �A �A
��� ��� ���

α α

6

?

l

Let Ncrit = Nf = force to rupture

The middle strut (2) ruptures at
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Let Ncrit = Nf = force to rupture

The middle strut (2) ruptures at

Ff = Nf(1 + 2 cos3 α)

Simplified equilibrium: 2N1 cosα + 0 = Ff ⇒ N1 = Nf
1 + 2 cos3 α

2 cosα︸ ︷︷ ︸
> 1

> Nf

F < Ff = Nf(1 + 2 cos3 α)

Remark: Ignoring (2) altogether a conservative condition follows as F < 2Ncrit cosα







Ductile fracture
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The middle strut (2) yields at

Fe = NY (1 + 2 cos3 α)
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The middle strut (2) yields at

Fe = NY (1 + 2 cos3 α)

Simplified equilibrium: 2N1 cosα + NY = F > Fe
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Let Ncrit = NY = AσY

The middle strut (2) yields at

Fe = NY (1 + 2 cos3 α)

Simplified equilibrium: 2N1 cosα + NY = F > Fe ⇒ Fp = NY (1 + 2 cosα)

F < Fp = NY (1 + 2 cosα)

Remark: No elastic solution needed!



Plastic limit analysis
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Admissible force (stress) method

2NY cosα + NY = Fp

Fp = NY (1 + 2 cosα)

Remark: Compatibility equation not needed!
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Collapse load margin

Elastic-plastic load factor

κ =
Fp
Fe

Truss structure problem

κ =
1 + 2 cosα

1 + 2 cos3 α
= 1.2 (for α = 30◦)

Typical value for bending and torsion, κ ' 1.5, is used in many design codes.
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Elastic analysis only needs to be performed! Plasticity included via FoS.
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Residual stresses by solving a statically indeterminate problem or . . .
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Define

N2(F ) =

{
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NY , F > Fe

Residual force

N res
2 = N2(F ) + N el
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2 ≥ −NY )

Limit state
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−κN el
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= NY − κNY

N res
2 = NY (1− κ)

For κ ≤ 2 shakedown occurs, i.e., the structure’s response becomes fully elastic.
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Life time prediction

High cycle fatigue

• Whole process is entirely elastic.

• Crack propagation is the culprit.

• Fatigue strength σc may be introduced so that σmax <
σc
k

.

Low cycle fatigue

• Repeated plastic deformation in cycles.

• If κ ≤ 2 do nothing.

• If κ > 2, compute ∆εp and use a strain-life method (Coffin-Manson).


