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Elastic unloading

if σε̇ < 0 , we set λ = 0
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Hooke’s law revisited

General formulation

σij = Cijklεkl

Symmetries

i↔ j , k ↔ l , ij ←→ kl

Positive definiteness

∀ε 6= 0 : εijCijklεkl > 0

Isotropy

S = 2G(ε− εmI) and σm = 3Kεm

where

G =
E

2(1 + ν)
and K =

E

3(1− 2ν)
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λ =
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∂σij
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∂F

∂σpq
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Associated flow rule

Necessary condition
∂F

∂σij
CijklRkl > 0

Corollary

R = function(∇F )

Association

Rij =
∂F

∂σij

Alternatively

CijklRkl =
∂F

∂σij
(interesting possibility)

Note: AFR always meets the necessary condition as C is sym+def.
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J2-theory

Effective stress

σe =
√
3J2 =

√
3
2SijSij

Association

Rij =
∂σe
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=
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Flow rule
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2

λ

σe
Sij (deviatoric)

∂F

∂σij
Cijklε̇kl = 3G

Sij ε̇ij
σY

∂F

∂σpq
Cpqrs

∂F

∂σrs
= 3G > 0

Plastic strain increment

λ =
Sij ε̇ij
σY

⇒ ε̇pij

Stress increment

σ̇ij = σ̇tij − 2Gε̇pij

Remark: Note that Sij ε̇ij may be regarded as distortional power density.
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Tresca criterion

σ1 − σ3 ≤ σY

Viscous stress

σ = 2µε̇

Incompressibility

ε̇m = 0 ⇒ σ = S

Hence

ε̇ij =
1

2µ
Sij (for total strain)

• We infer by ε̇ = 0 ⇒ σ = 0 ⇒ εe = 0 that elastic strain is omitted,

therefore this theory is only good for steady state flow.
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• Same concept used but for the yield criterion√
3
2‖S‖ ≤ σY

also supported by Huber (1904) and Hencky (1924).

• It was discovered by Drucker much later (in 1956) that the deviatoric flow rule

was incompatible with the Tresca criterion but worked well with the von Mises

one. It, thus, transpired that von Mises had accidentally stumbled on the right

solution!

• The flow rule ε̇ij = Sij/2µ is called today the Vénant-Lévy-Mises equation.

Still, as we know already, it is incomplete.
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Prandtl-Reuss (1930)

• It was Reuss who, finally, included elastic strain via the additive decomposition

so that only the plastic part would then be computed from VLM equation as

ε̇pij = λpSij (for plastic strain)

• This, in fact, corresponds to J2-theory with λp = 3λ/2σe substituted. Either

of the multipliers λ or λp can be determined from the consistency condition to

the exact same result.


