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Conclusion for stretching mode (moral)

• The small strain tensor may well be used even for large deformation. Diagonal

components represent relative elongations regardless of the strain magnitude.

• The Green-Lagrange strain tensor is by no means better (if not worse) measure

of stretching than the small strain tensor.

• However, at the end of the day, all ’normal’ strain tensors are equivalent as

the change of one for another only means argument substitution in the free

energy function. A choice of a proper strain tensor is, thus, merely a matter

of convenience.
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γ

6e12 = ε12

−Π
2

Π
2

0

remark: for γ → 0, tan γ ' γ

• The small strain tensor contains

tangents of shear angles, tan γ,

but not the shear angles, γ,

themselves. This, for large dis-

tortion, is even better measure of

shearing.

• The Green-Langrange strain ten-

sor offers the exact same descrip-

tion. So far, no advantage of GL

has been demonstrated.
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[F ] = [A]T (orthonormal), J = cos2 ϕ + sin2 ϕ = 1 (isochoric)
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u1(X1, X2) = X1(cosϕ− 1)−X2 sinϕ

u2(X1, X2) = X1 sinϕ + X2(cosϕ− 1)

Small strain tensor

[ε] =

[
cosϕ− 1 0

0 cosϕ− 1

] • Not invariant under rigid body rotation.

• For small rotation, cosϕ ' 1 as ϕ→ 0.

• Example: ϕ = 1◦, ε11 = −1.5× 10−4

σ11 ' Eε11 = −30 MPa.





Conclusions

• All possible states were covered. The three modes combine into any pattern

of the deformation gradient. Shrinking the solution domain, l0, h0 → 0 or,

equivalently, setting l0 = dX1 and h0 = dX2, accounts for the inclusion of

nonlinear displacement fields.
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nonlinear displacement fields.

• Considering straining modes, i.e. stretching and shearing, no advantage of the

Green-Lagrange strain should be claimed over the small strain tensor. Problems

are posed by rotation. Thus, the use of small strain approach is limited to

problems with small rotation but possibly large deformation.



Conclusions

• All possible states were covered. The three modes combine into any pattern

of the deformation gradient. Shrinking the solution domain, l0, h0 → 0 or,

equivalently, setting l0 = dX1 and h0 = dX2, accounts for the inclusion of

nonlinear displacement fields.

• Considering straining modes, i.e. stretching and shearing, no advantage of the

Green-Lagrange strain should be claimed over the small strain tensor. Problems

are posed by rotation. Thus, the use of small strain approach is limited to

problems with small rotation but possibly large deformation.

• It follows, that the knowledge of strain compoments alone does not guarantee

the correct application of the small strain theory. In most cases, though, it

is the displacement field that is damaged, not stresses. A class of problems

requiring the employment of GL-tensor is said to be geometrically nonlinear.
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(initial stress = S0)
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2S sinϕ = Q
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Equilibrium equation

2S sinϕ = Q

Linearization

S ' S0, sinϕ ' tanϕ = 2v/l0



Geometrically nonlinear problems (1/2)

A prototype ’fly’ problem
(initial stress = S0)p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pPPPPPPPPPP

����������

Q

?

s
��BB

s
��BBϕ

Equilibrium equation

2S sinϕ = Q

Linearization

S ' S0, sinϕ ' tanϕ = 2v/l0

Solution

v =
Ql0
4S0

Despite the solution is linear we speak about ’geometric nonlinearity’ as the equi-

librium equation was written for a deformed state and linearized only later.



Geometrically nonlinear problems (2/2)

Small stresses, strains and even rotations yet the latter must be taken into account

using a proper description, usually via the Green-Lagrange strain tensor.
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• Cables, membranes, plates, shells.

• Stability of thin walled structures.

• Vibration of pre-stressed structures (turbine blades).

• FEM – initial stress matrix.



Geometrically nonlinear problems (2/2)

Small stresses, strains and even rotations yet the latter must be taken into account

using a proper description, usually via the Green-Lagrange strain tensor.

• Cables, membranes, plates, shells.

• Stability of thin walled structures.

• Vibration of pre-stressed structures (turbine blades).

• FEM – initial stress matrix.

Classification

• ε + Hooke linear elasticity

• ε + plast. materially nonlinear problems

• e + Hooke geometrically nonlinear problems


