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Small strain tensor

Green-Lagrange strain

el = ~([EF[F) - [1]) =

2 %( ([] + 1)) ([=] + [1]) = 1))
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Green-Lagrange strain
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Small strain tensor

Green-Lagrange strain

Component definition

c: [d=p(+[ET) | sym




Institute of Thermomechanics

Small strain tensor

Green-Lagrange strain

6] = S([EFEE] — 1) = 5((+ LD + (1) — 1)
= 20 + [+ (27 1e]) = 5[+ [27) for small [

Direct notation

ezé(zntzT) sym

Thus, e — € asz — 0.
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Small strain tensor

Green-Lagrange strain

6] = S([EFEE] — 1) = 5((+ LD + (1) — 1)
= 20 + [+ (27 1e]) = 5[+ [27) for small [

Index notation
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Example 2: Stretching (1/3)

XQ‘
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Example 2: Stretching (1/3)

XQ‘
....................... Al
" u (X1, Xo) = Z_Xl
0
. UQ(Xl,XQ) = O
lo Al X1

Displacement gradient

[ 8u1 8u1 i
0X1 0Xs
[Z] a (‘Mg 81@
| 0X1 00Xy |
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Example 2: Stretching (1/3)

XQ‘
....................... Al
u1 (X1, Xo) = Z_X1
h 0
. UQ(Xl,XQ) = O
lo N X1

Displacement gradient

[ aul 8u1 i

Iy
8u2 (9u2 0 0
| 0X1 0X, |
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Example 2: Stretching (1/3)

XQ‘
....................... Al
" u (X1, Xo) = Z_Xl
0
. UQ(Xl,XQ) = O
lo Al X1

Displacement gradient
N Deformation gradient
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Example 2: Stretching (1/3)

XQ‘
....................... Al
" u (X1, Xo) = Z_Xl
0
. UQ(Xl,XQ) = O
lo Al X1

Displacement gradient  Deformation gradient

g() 1+g0
2= | T Fl=| &

0 0 0 1



Institute of Thermomechanics

Example 2: Stretching (1/3)

XQ‘
....................... Al
" ur (X1, Xo) = Z_X1
0
. UQ(Xl, XQ) = O
Iy N 4
Displacement gradient  Deformation gradient
Al
o 0 1+ = 0 U > (
{Z] = lo [F] = lo ZO

0 0 0 1



Institute of Thermomechanics

Example 2: Stretching (1/3)

XQ‘
....................... Al
" ur (X1, Xo) = Z_X1
0
. UQ(Xl, XQ) = O
Iy N 4
Displacement gradient  Deformation gradient o
Al Al J=1+—>0
A 1+ lo
7] = "o S \ Al > —ly (regularity)

0 0 0 1
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Example 2: Stretching (1/3)

XQ‘
...................... Al
" up (X1, Xo) = Z_X1
0
0 UQ(Xl,XQ) = O
lo Al X1

Displacement gradient  Deformation gradient  j—=1 + Al ~ 0

lo
= 0 . = 0 Al > —lj (regularity)
2= % = . Vi holly + Al)
0 0 7| M L e 7

7 holo
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Example 2: Stretching (1/3)

XQ‘
....................... Al
" u (X1, Xo) = Z_Xl
0
. UQ(Xl,XQ) = O
lo Al X1

Displacement gradient
Small strain tensor
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Example 2: Stretching (1/3)

XQ‘
....................... Al
" u (X1, Xo) = Z_Xl
0
. UQ(Xl,XQ) = O
lo Al X1

Displacement gradient  Small strain tensor
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Example 2: Stretching (1/3)

XQ‘
....................... Al
" u1 (X1, Xo) = Z_X1
0
. UQ(Xl,XQ) = O
lo N X1

Displacement gradient  Small strain tensor
GL strain tensor
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Example 2: Stretching (1/3)

XQ‘

lo

Al X

Displacement gradient

Small strain tensor

Al
u (X1, Xo) = l

0
UQ(Xl,XQ) = O

GL strain tensor

€] =

[ Al

1

. =
b 2

0

(

Al
lo

)«

0
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Example 2: Stretching (2/3)

strain

€11
€11

—2lg

N
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Example 2: Stretching (2/3)

strain
€11

€11

—2ly — 0

J <0 J >0

N



Institute of Thermomechanics

Example 2: Stretching (2/3)

strain
€11

€11

(1+3)
In{1+ —
lo

—2[0 —l() 0 Al

J <0 / J >0
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Example 2: Stretching (3/3)

Conclusion for stretching mode (moral)

e The small strain tensor may well be used even for large deformation. Diagonal
components represent relative elongations regardless of the strain magnitude.
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Example 2: Stretching (3/3)

Conclusion for stretching mode (moral)

e The small strain tensor may well be used even for large deformation. Diagonal
components represent relative elongations regardless of the strain magnitude.

e The Green-Lagrange strain tensor is by no means better (if not worse) measure
of stretching than the small strain tensor.
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Example 2: Stretching (3/3)

Conclusion for stretching mode (moral)

e The small strain tensor may well be used even for large deformation. Diagonal
components represent relative elongations regardless of the strain magnitude.

e The Green-Lagrange strain tensor is by no means better (if not worse) measure
of stretching than the small strain tensor.

e However, at the end of the day, all 'normal’ strain tensors are equivalent as
the change of one for another only means argument substitution in the free
energy function. A choice of a proper strain tensor is, thus, merely a matter
of convenience.
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Example 3: Shearing (1/2)

XQ‘

/\ u1 (X1, X2) = Xotany
UQ(Xl,X2> ==
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Example 3: Shearing (1/2)

XQ‘

lo X

Displacement gradient

0 tan-~y
=5 % |

ul(Xl, XQ) = X2 tanw
UQ(Xl, XQ) ==
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Example 3: Shearing (1/2)

XQ‘

lo X

Displacement gradient  Deformation gradient

0 tan-~y 1 tan-y
[z]—lo O ] A=, ]

ul(Xl, XQ) = X2 tanw
UQ(Xl, XQ) ==
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Example 3: Shearing (1/2)

XQ‘
/\ u1 (X1, X2) = Xotany
hg U
UQ(Xl, XQ) ==
ly X

Displacement gradient  Deformation gradient

0 tan-+y 1 tan-y J =1 (isochoric)
2] = HES

(. 0 1




Institute of Thermomechanics

Example 3: Shearing (1/2)

XQ‘

/\ u1 (X1, X2) = Xotany
UQ(Xl,XQ) ==

lo X

Displacement gradient  Small strain tensor

0 tan-~y _} 0 tanvy
[Z]_[O 0 ] [e]_Qltarw 0 ]
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Example 3: Shearing (1/2)

XQ‘
/7\ u1 (X1, X2) = Xotany
ho
UQ(Xl, XQ) ==
lo Al
Displacement gradient  Small strain tensor GL strain tensor

0 tan-~y 1 0 tanvy 1 0 tanvy
] = =5 -3 2
e (0 28Stany 2 | tany tan®vy
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Example 3: Shearing (2/2)

€12 = €12 1

() famm
o

() fammi
2
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Example 3: Shearing (2/2)

€12 = €12 1

() famm
o

() fammi
2

remark: for v — 0, tan~y >~
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Example 3: Shearing (2/2)

€12 = €12 1

e [he small strain tensor contains
tangents of shear angles, tan~y,
but not the shear angles, -,
themselves. This, for large dis-

tortion, is even better measure of

no| =
o

no| =
2

shearing.

e The Green-Langrange strain ten-
sor offers the exact same descrip-

tion. So far, no advantage of GL
has been demonstrated.

remark: for v — 0, tan~y >~
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Example 4: Rotation

Xy
X5

X/
: u1 (X1, Xo) = Xi(cosp — 1) — Xosinp

P © ‘ u2(X1, X2) = X1sinp + Xs(cosp — 1)
0 X,
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Example 4: Rotation

Xo 4
X5
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
u2(X1, X2) = X1sinp + Xs(cosp — 1)

Transformation matrix

A =

—sin cosy

COS @ SIn @ ]
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Example 4: Rotation

Xo
X
X1 :
u1 (X1, Xo) = Xi(cosp — 1) — Xosinp
P ) ‘ u2(X1, X2) = X1sinp + Xs(cosp — 1)
0 X,
Transformation matrix Rotation condition
Al =

—sin cosy

COS (¥ singp] {z'} = {X}
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Example 4: Rotation

X9
X3
X1 :
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
) u2(X1, X2) = X1sinp + Xs(cosp — 1)
RO ‘Xl
Transformation matrix Rotation condition Displacement field
{A] COS Si'ﬂgp] {x/} - {X} {u}: {x}_{X}

—sin cosy
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Example 4: Rotation

= [A]'{='} — {X}

Xo 4
X5
X1 :
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
P © ‘ u2(X1, X2) = X1sinp + Xs(cosp — 1)
0 Xl
Transformation matrix Rotation condition Displacement field
{A] COS @ SIn @ ] {x/} - {X} {u} = {:C} - {X}

—sin cosy
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Example 4: Rotation

Xy
X;
X :
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
P © ‘ u2(X1, X2) = X1sinp + Xs(cosp — 1)
0 Xl
Transformation matrix Rotation condition Displacement field
: it — —1X
[A] - COS @ SIn @ {ZIJ/} — {X} { } Jif}; /{ } .
o (A} - (X}

= [A]'{X} - {X}
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Example 4: Rotation

Xy
X;
X :
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
P © ‘ u2(X1, X2) = X1sinp + Xs(cosp — 1)
0 Xl
Transformation matrix Rotation condition Displacement field
: it — —1X
[A] - COS @ SIn @ {ZIJ/} — {X} { } Jif}; /{ } .
o (A} - (X}

= (AL
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Example 4: Rotation

Xo 4
X5
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
u2(X1, X2) = X1sinp + Xs(cosp — 1)

Transformation matrix

A =

—sin cosy

COS @ SIn @ ]
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Example 4: Rotation

X4
X5
X1 :
u1(X1, Xo) = Xi(cosp — 1) — Xysin
n © ‘ u2(X1, X2) = X1sinp + Xs(cosp — 1)
0 Xl
Transformation matrix Displacement gradient Deformation gradient
Al =

COS singo] a [cosgp—l —sin ] F [cosgp —singp]
Z| = —

—sin cosy Sin (Ees (© — 4 siny  Ccos
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Example 4: Rotation

X4
X5
X1 :
u1(X1, Xo) = Xi(cosp — 1) — Xysin
n © ‘ u2(X1, X2) = X1sinp + Xs(cosp — 1)
0 Xl
Transformation matrix Displacement gradient Deformation gradient
Al =

COS singo] a [cosgp—l —sin ] F [cosgp —singp]
Z| = —

—sin cosy Sin (Ees (© — 4 siny  Ccos

[F'] = [A]" (orthonormal), J = cos? ¢ + sin® ¢ = 1 (isochoric)
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Example 4: Rotation

X4
X5
X u1(X1, Xo) = Xi(cosp — 1) — Xysin
u2(X1, X2) = X1sinp + Xs(cosp — 1)

Feneg ;

Xy

Small strain tensor

cosp — 1 0
o=
0 cosp — 1
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Example 4: Rotation

Xo 4
X5
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
u2(X1, X2) = X1sinp + Xs(cosp — 1)

Small strain tensor
e Not invariant under rigid body rotation.

cosp — 1 0
€] = 0 . o ) e For small rotation, cos¢p ~ 1 as ¢ — 0.



Institute of Thermomechanics

Example 4: Rotation

Xo 4
X5
u1 (X1, X2) = Xi(cosp — 1) — Xpsing
u2(X1, X2) = X1sinp + Xs(cosp — 1)

_ e Not invariant under rigid body rotation.
Small strain tensor

e For small rotation, cosip ~ 1 as ¢ — 0.
cosp — 1 0
€] = [ 0 e | ] o ExamplEilis— 1° JIEEmlE > 10—+
011 ~ Fe;p = —30 MPa.
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Conclusions

e All possible states were covered. The three modes combine into any pattern
of the deformation gradient. Shrinking the solution domain, Iy, hy — 0 or,
equivalently, setting [j = dX; and hyg = dX5, accounts for the inclusion of
nonlinear displacement fields.
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Conclusions

e All possible states were covered. The three modes combine into any pattern
of the deformation gradient. Shrinking the solution domain, Iy, hy — 0 or,
equivalently, setting [j = dX; and hyg = dX5, accounts for the inclusion of
nonlinear displacement fields.

e Considering straining modes, i.e. stretching and shearing, no advantage of the
Green-Lagrange strain should be claimed over the small strain tensor. Problems
are posed by rotation. Thus, the use of small strain approach is limited to
problems with small rotation but possibly large deformation.
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Conclusions

e All possible states were covered. The three modes combine into any pattern
of the deformation gradient. Shrinking the solution domain, Iy, hy — 0 or,
equivalently, setting [j = dX; and hyg = dX5, accounts for the inclusion of
nonlinear displacement fields.

e Considering straining modes, i.e. stretching and shearing, no advantage of the
Green-Lagrange strain should be claimed over the small strain tensor. Problems
are posed by rotation. Thus, the use of small strain approach is limited to
problems with small rotation but possibly large deformation.

e |t follows, that the knowledge of strain compoments alone does not guarantee
the correct application of the small strain theory. In most cases, though, it
is the displacement field that is damaged, not stresses. A class of problems
requiring the employment of GL-tensor is said to be geometrically nonlinear.
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Geometrically nonlinear problems (1/2)

A prototype 'fly’ problem Q
- (initial stress = Sp)




Institute of Thermomechanics

Geometrically nonlinear problems (1/2)

A prototype 'fly’ problem
prototype Ty’ p (initial stress = Sy)




Institute of Thermomechanics

Geometrically nonlinear problems (1/2)
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Equilibrium equation
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Geometrically nonlinear problems (1/2)

A prototype 'fly’ problem
prototype Ty’ p (initial stress = Sy)

Equilibrium equation

25 sinp = Q)

Linearization
S >~ Sy, sing >~ tanyp =20/l
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Geometrically nonlinear problems (1/2)

A prototype 'fly’ problem
prototype Ty’ p (initial stress = Sy)

Equilibrium equation

25 sinp = Q)

Linearization

S~ Sy, sing ~tanp = 2v/l
Solution
_ Qb

V=10

Despite the solution is linear we speak about 'geometric nonlinearity’ as the equi-
librium equation was written for a deformed state and linearized only later.
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Geometrically nonlinear problems (2/2)

Small stresses, strains and even rotations yet the latter must be taken into account
using a proper description, usually via the Green-Lagrange strain tensor.



Institute of Thermomechanics

Geometrically nonlinear problems (2/2)

Small stresses, strains and even rotations yet the latter must be taken into account
using a proper description, usually via the Green-Lagrange strain tensor.

e Cables, membranes, plates, shells.
e Stability of thin walled structures.
e Vibration of pre-stressed structures (turbine blades).

e FEM — initial stress matrix.
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Geometrically nonlinear problems (2/2)

Small stresses, strains and even rotations yet the latter must be taken into account
using a proper description, usually via the Green-Lagrange strain tensor.

e Cables, membranes, plates, shells.
e Stability of thin walled structures.
e Vibration of pre-stressed structures (turbine blades).

e FEM — initial stress matrix.

Classification
e ¢ + Hooke linear elasticity
e ¢ + plast.  materially nonlinear problems

e ¢ + Hooke geometrically nonlinear problems



