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Material models of small strain theory

Hyperelastic

oY 0% |

= — N 5 €1 = Cijni€ri
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Oij
Linear elastic
for Cijkl = const. : 04 = Cijklek:l
Elastic-plastic
0ij = Cijri(én — €y) = Ciipifr

Hypoelastic

o = Chre

Remark: Internal friction, backstress evolution, etc.
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Concept of finite strains

Generalization
& #+ C'""D
Cauchy stress in not invariant under the rigid body motion (RBM).

Denote
o= C"D
... which represents the stress rate due to straining, so that ...

& =0 + kinematic RBM correction

Definition

(@)

o= o — kinematic RBM correction

Remark: The operation & is known as the objective (time) derivative.
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Rigid body motion (1/2)

Cauchy stress

o] = [A]" [o*][A] = [A]"[00][A]

Material derivative

6] = [A]"[o0l[A] + [A]"[00][A] = [A]"[Allo] + [o][A]"[A]

Current position vector

{z} = [A"{=*} = [A"({O"} + {¢*}) = [A]"({O*} + {X})

Differentiating
d{z} = [A"d{X} = [F]=[4" = [L]=[F|[F]" =[A"[4]

Hence
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Oldroyd (contravariant)
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Rate of deformation
(D] = 3([L] + [L]")

DO
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Rigid body motion (2/2)

Oldroyd (contravariant)
6 = Lo + oL’ (sym)

Rate of deformation

[D] = 3([Z] + [Z]")

DO

= 1([ATT[A] + [AT[A))
= LAV = 3i) = [0
Jaumann

c=Wo—-—ocW (sym)
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Rigid body motion (2/2)

Oldroyd (contravariant) Oldroyd (covariant)
6 = Lo + oL’ (sym) 6 =-L'c — oL (sym)

Rate of deformation

[D] = 5([L] + [Z])

= 5([A]"[A] + [A]T[A])
= 5([AI[A]) = 3[1] = [0

2

Jaumann

c=Wo—-ocW | (sym)
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Rigid body motion (2/2)

Oldroyd (contravariant) Oldroyd (covariant)
6 = Lo + oL’ (sym) 6 =-L'c — oL (sym)
Rate of deformation
(D] = 3([L) + [L]F) Green-Naghdi
= L([AT[A] + [A)7[A) F=RU=R = L=RRT=Q=W
= 5([AI[A]) = 3[1] = [0
SETGELT

c=Wo—-—ocW (sym)
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7 7 (sym) functions of L.
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Rigid body motion (2/2)

Oldroyd (contravariant) Oldroyd (covariant)
o =Lo + oL’ (sym) 6=—-L"c — oL (sym)
Rate of deformation
(D] = 3([L) + [L]F) Green-Naghdi
= L([A]T[A] + [A]F]A) F=RU=R = L=RR'=Q=W
= 5([AI"[A]) = 3l] = [0 Thus

o =Qo — o) (sym)
Jaumann

Note, that GN-rate depends on R,
whereas the previous corrections are solely

5 = Wo — oW
7 7 (sym) functions of L.

...and many more, e.g. Truesdell, log-spin, mixed Oldroyd (nonsym.), etc.
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Zaremba-Jaumann-Noll rate (1/2)

Assume

Calibration on RBM
fo-rD=0: L(W)=Wog—-0oW
...but L(W) is independent of D, therefore

c=LD)+ Wo—-oW
> RBM correction

Zaremba(1903), Jaumman (1911), Noll(1940)

o=6—Wo+oW | (sym)
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2. o= C*D (constitutive equations)

3.6 =0 *Wo — oW
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Zaremba-Jaumann-Noll rate (2/2)

Algorithm:
I.L=D+W
2. o= C'™D (constitutive equations)

3.6 =0 *Wo — oW

Remarks
e Derivation of ZJN derivative is rigorous.
e ZJN based CE are correct and useful.
e Oldroyd derivatives are equivalent.

e GN derivative is not equivalent as it depends on the reference configuration.
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Example 3: Dienes (1979)

XQ‘

/—\ u; = Xokt = v = kX9 = kxs

uy =0 = vy =0

lo X

Universal solution for simple shear

a-[o8] w-z[va] m=g[ )]
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Example 3: Dienes (1979)

XQ‘

uy =0 = vy =0

lo X

Universal solution for simple shear

a-[o8] w-z[va] m=g[ )]

Wl = elv] = 5 | 27 72T (om)

O — 011 —2012

/—\ u; = Xokt = v = kX9 = kxs
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Example 3: Dienes (1979)

Hypoelastic eqn. of degree zero with Lamé’s constants

o= Atr (D)I + 2D

In particular
: 0 1
=0+ k| ] ]

Adding ZJN correction

[(711 (512] [0 1] k[ 209 022—011}
e = pk = -
021 092 10 2000, — 011 Melon >

Only the specification of objective rate completes the CE. Here we chose ZJN.
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Example 3: Dienes (1979)

System of three ODE to solve:

on = koo, 02 = —koy, o012=pk+

—(022 - 011)
2

(5-11+0.-22:O
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Example 3: Dienes (1979)

System of three ODE to solve: .

on = kogy, 092 = —kois, 512=Mk+§(022—011)

011 + 092 = const.
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Example 3: Dienes (1979)

System of three ODE to solve: .

on = kogy, 092 = —kois, 512=Mk+§(022—011)

011 + 092 = const.

Initial condition at ¢ = 0: 071 + 099 =0
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o1 = kogr, 092 = —kois, 012=N/€+§(022—011)
o1t 02 = 0 ,uk —;r/fO'QQ

Initial condition at t = 0: 011 + 099 = 0
Differentiating the last eqn. and substituting from the second:
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Example 3: Dienes (1979)

System of three ODE to solve:

o1 = kogr, 092 = —kois, 012=N/€+§(022—011)
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Initial condition at t = 0: 011 + 099 = 0
Differentiating the last eqn. and substituting from the second:
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Solution
019 = Acoskt + Bsin kt
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Example 3: Dienes (1979)

System of three ODE to solve:

o1 = kogr, 092 = —kois, 012=N/€+§(022—011)
o1t 02 = 0 ,uk —;r/fO'QQ

Initial condition at t = 0: 011 + 099 = 0
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Using the last eqn.: 099 = —p + %dlg = —u + Bcoskt
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Example 3: Dienes (1979)

System of three ODE to solve:

o1 = kogr, 092 = —kois, 012=N/€+§(022—011)
o1t 02 = 0 ,uk —;rkO-QQ

Initial condition at t = 0: 011 + 099 = 0
Differentiating the last eqn. and substituting from the second:

5'122160"22:—/{20'12 — 5’12—|—/€20'12:0

Solution
019 = Bsin kt

1
Using the last eqn.: 099 = —p + %dlg = —u + Bcoskt

Initial condition at ¢t =0: 099 = —pu+ B =0
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Example 3: Dienes (1979)

System of three ODE to solve:

o1 = kogr, 092 = —kois, 012=N/€+§(022—011)
o1t 02 = 0 ,uk —;rkO-QQ

Initial condition at t = 0: 011 + 099 = 0
Differentiating the last eqn. and substituting from the second:

5'122160"22:—/{20'12 — 5’12—|—/€20'12:0

Solution
019 = [ 8in kt

1
Using the last eqn.: 099 = —p + %dlg = —u + Bcoskt

Initial condition at t =0: 099 = —pu+ B =0 = 099 = u(—1+ coskt)
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011 = —099 = (1 — coskt)

o192 = fusinkt
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Example 3: Dienes (1979)

ZJN solution

011 = —099 = (1 — coskt)

o192 = fusinkt

012}

=G o019~ Gy (linear approx.)

Vi
N .

v = 1.004 rad
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Example 3: Dienes (1979)

ZJN solution

011 = —099 = (1l — coskt)

o192 = fisinkt

012

p=G o019 ~ Gy (linear approx.)

i
\/ kt = tan~y

v = 1.004 rad

Only valid for reasonable shear angle, i.e., good for most engineering problems.
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e Dienes (1979) proposed the use of GN-rate, which was later disputed by Halleux
and Donea (1986).

e In fact, Simo and Pister (1984) proved that no commonly known stress rate
enables to recover reversible elastic response from the hypoelastic equation of
degree zero.

e Inconclusive proof of integrability was supplied by Xiao, Bruhns and Meyers
(1999) for the log-spin rate.
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for a different objective rate, which then needs merely to be converted.
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Conclusions

e Dienes (1979) proposed the use of GN-rate, which was later disputed by Halleux
and Donea (1986).

e In fact, Simo and Pister (1984) proved that no commonly known stress rate
enables to recover reversible elastic response from the hypoelastic equation of
degree zero.

e Inconclusive proof of integrability was supplied by Xiao, Bruhns and Meyers
(1999) for the log-spin rate.

e It is difficult to propose a suitable C" for ZJN rate, unless it follows directly
from the free energy (i.e., it is not hypoelastic) or one has already set up C"?
for a different objective rate, which then needs merely to be converted.

e /JN rate is required as an output parameter of the UMAT procedure, which
poses less of a problem than often thought.



