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Abstract�This paper presents an improvement of the resonant 
ultrasound spectroscopy (RUS) inverse procedure for 
determination of elastic properties of shape memory alloys. 
Reliable mode identification and, thus, a well-posed resonance 
inversion was achieved by evaluation of both resonance 
frequencies and eigenvibration modes using a scanning laser 
interferometry measurement. The proposed approach was 
verified on determination of elastic constants and their 
temperature dependences of  austenitic and martensitic phases of 
CuAlNi single crystals. The results on CuAlNi well correspond to 
our previous obtained by the pulse-echo measurement. The 
method can be applied for twinned structures, which enables 
investigation of naturally twinned shape memory alloys. 
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I. INTRODUCTION 

Resonant ultrasound spectroscopy (RUS) is a well-known 
technique for determination of elastic properties of solids based 
on measurements of natural frequencies of free elastic 
vibrations of a small, simply shaped specimen [1]. Evaluation 
of the elastic coefficients from RUS measurements is an 
inverse problem, i.e. the results are compared with computed 
eigenfrequencies of the specimen for successively precised 
guesses of the elastic coefficients. The inverse procedure for 
determination of the optimal elastic coefficients has been 
developed for rectangular specimens of isotropic materials, as 
well as for materials of cubic and orthotropic symmetry, with 
the principal axes of the material parallel to the specimen�s 
edges [2].   

However, the developed procedures are not sufficient for 
simultaneous determination of the elastic properties of both 
austenitic and martensitic phases of shape memory alloys.  
When a rectangular austenitic specimen is transformed into 
a single variant of martensite its shape changes into a general 
parallelepiped with general orientation of the orthotropic 
martensitic structure [3]. Vice-versa, if a martensitic specimen 
has a rectangular shape and basic orientation, it becomes 
nonrectangular and generally oriented when it returns to 
austenite. On this purpose, the procedure must be generalized 
for an arbitrary oriented parallelepiped. Another improvement 

of the technique is necessary due to the high anisotropy of the 
investigated materials. For such strongly anisotropic materials 
(anisotropy factor larger than 10 in the austenitic phase), the 
number of measured eigenfrequencies necessary for reliable 
inversion is significantly larger than for classical materials. For 
example, to obtain all elastic coefficients of an martensitic 
single crystal of CuAlNi, 120 frequencies were measured. For 
such extensive sets of the input data, a crucial point is to 
associate correctly the frequencies to modes of vibration, i.e. to 
compare, within the inverse procedure, physically 
corresponding frequencies. For this reason, the specimens 
were, during the measurements, scanned by a laser 
interferometer to obtain information about the shapes of 
particular eigenmodes. This method was firstly introduced by 
Ogi et al. in [4]. Involving the eigenmodes in the optimization 
process significantly stabilizes the whole procedure.

II. FREE ELASTIC VIBRATIONS OF AN ANISOTROPIC 
PARALLELELPIPED

Let us consider an anisotropic, nonrectangular 
parallelepiped in Fig.1. In the Cartesian coordinate system x = 
[x1, x2, x3], let the anisotropic elasticity be described by the 
tensor Cijkl and the parallelepiped's faces have unit normals n1,
n2, and n3.

Figure 1. Geometry of the parallelepiped and introduction of Cartesian 
systems x and y.

An oblique coordinate system can be introduced by setting 
the axes y = [y1, y2, y3], parallel to the parallelepiped�s edges. 
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For the origins of the systems x and y coinciding, their 
coordinates are related by linear equation 

y = Bx ,                        (1) 

where B is a nonsingular matrix given by: 
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The resonance frequencies and eigenvectors of such 
specimen can be sought by finding stationary points of the 
Lagrangian 
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where V is the specimen's volume, u(x) is the displacement 
field,  is the mass density, and  is the sought eigenfrequency. 
The integration is performed over the whole volume, i.e. in the 
range 

yi - di / 2; + di / 2 ,       i = 1,2,3,    (4) 

where di are the distances of corresponding parallel faces. 
Applying the substitution (x)  (y) given by (1) in the 
Lagrangian (3), we obtain 
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where ã det B is the Jacobian of the considered 
transformation, and  

                           
lojpipkoijkl BBCT ã

1 .  (6) 

The four-dimensional array Tijkl is does not have properties 
of a 4th order tensor, but it remains symmetric with respect to 
index doubles ij and kl. The advantage of using Tijkl rather than 
a fully rotated tensor lies in considerably faster evaluation of 
this array. Moreover, this approach keeps the displacement 
vectors u in the original coordinate system x (even if they are 
function of oblique coordinates y,) which simplifies final 
evaluation of the eigenmodes. For Lagrangian (5), the Ritz 
method can be applied by taking base functions in the form 
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where Pn(y) is the Legendre polynomial of degree n defined as 

�ã n
n

n

nn x
dx
d

n
yP )1(

!2
1)( 2 .                       (8) 

Searching for stationary points of the Lagrangian  leads to 
a symmetric eigenvalue problem   

ø ÷ 0],[],],[,[],],[,[
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where  

cfbeadijjdefiabc ã],[],,[
,          (10) 
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and [abc,i] are coefficients of the eigenvector in the basic 
functions given above. The Cholesky algorithm, implemented 
in the standard Matlab routine »·¹ò³, was used for 
determination of both the eigenfrequencies and eigenvectors of 
(9).  

III. INVERSION PROCEDURE

To evaluate the elastic constants, one must first solve the 
forward problem of calculating the natural frequencies from the 
elastic constants, and apply a nonlinear inversion procedure to 
find the required elastic constants from the measured natural 
frequencies. It represents nonlinear minimization in the sense 
of the least square method of the objective function 
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where p
2

 cal and p
2

 exp are associated calculated and measured 
eigenvalues of pth  measured mode. Reliable mode association 
is crucial for stability of the inversion and can be achieved by 
displacement field measurement on the vibrated specimen 
using scanning laser interferometry described below.  

 The accuracy of the calculated frequencies requires using a 
high degree N of the Legendre polynomials. On the other hand, 
the order of the symmetric matrix  increases rapidly with 
increasing N (e.g. for N = 16 is 2907), which also rapidly 
increases computation time. A useful reduction of the number 
of forward calculation can be done deriving gradient and 
Hessian of the objective function. Choosing the eigenvectors j
of the matrix to form orthogonal normalized system, and 
using the linear dependency of the coefficients of matrix  on 
Cijkl, we obtain from the theory of perturbation: 
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with Ck denoting the set of independent elastic constants for 
given material symmetry. The matrixes / Ck are independent 



on elastic constants Ck and can be evaluated previously. More, 
completion of the matrix  can be simply done considering

 = ( / Ck) Ck .                                     (16) 

A novel hybrid architecture of the inverse problem solution, 
combining both gradient and simplex method, was developed 
to solve this optimizing problem. In every step of the simplex 
method, the gradient Levenberg-Marquardt algorithm is 
released from a starting point given by the actual position of 
the simplex. In the other words, the simplex method is 
optimizing the starting points for the Levenberg-Marquardt 
method. Such complex algorithm combines the robustness of 
a simplex search with an efficiency of the gradient method.

IV. EXPERIMENTAL SETUP

The experimental setup for RUS experiments is outlined in 
Fig.2. It consists of a National Instruments PXI high speed 
digital I/O system including a waveform generator and a two-
channels digitizer which enables synchronized sampling of 
both output and input cards. The broadband chirp signal is 
generated by the high frequency D/A converter and, after the 
amplification, excites the specimen by miniature piezoelectric 
transducer placed on the specimen�s corner.   The displacement  
response is detected  in a mesh of points on the sample surface 
by means of the laser interferometer  (Polytec OFV-2570) 
equipped with an original scanning unit consisting of two 
dielectric mirrors  on motorized  positional stages. The unit is 
used for equidistant scanning of the specimen�s surface with 
precision up to 1.îëkm. The frequency responses in individual 
points of the mesh are acquired automatically.   

Figure 2. Experimental setup. 

Besides the mode identification mentioned in the 
introduction, another advantage of such point to point 
noninvasive measurement of vibrational sample response is 
that we avoid omitting of some resonances at signal detection 
near node points (zero-valued points of vibrational modes) by 
averaging the magnitudes of measured spectra over different 
points on the sample surface. Examples of measured and 
computed eigenmodes of a martensitic parallelepiped of a 
CuAlNi shape memory alloy are shown in Fig.3. The examined 
was a nonrectangular 3.6mm × 4.2mm × 4.0mm parallelepiped 
with face normals orientation close to [010] [-1 0 1] [1 0 1]. 

V. APPLICATIONS OF PROPOSED METHODS

The above described method was applied to determine all 
elastic coefficients of pure phases of the CuAlNi shape 

memory alloys. The temperature dependence of these 
coefficients at temperatures close to the phase transition 
temperature illustrates shear softening of the material prior to 
the transitions.  Examples of the investigated thermal 
dependences are shown in Fig.4, where the behaviors of 
corresponding elastic parameters of both phases are compared. 
The coefficients CMS and CS (introduced by authors in [3]) are 
the combinations of elastic constants corresponding to minimal 
shear velocities in particular phases, Aort and A are the 
anisotropy coefficients.  

Figure 3. Example of comparison of measured and computed shapes of 
eigenmodes of a CuAlNi martensitic specimen. 

Figure 4. Thermal dependences of elastic properties of the CuAlNi shape 
memory alloy in vicinity of phase transitions. 

Applicability of the proposed method for a general 
parallelepiped enabled this method to be also used for 
determination of effective elastic properties of finely twinned 
martensitic structures. As a testing material, the CuAlNi alloy 
was chosen again. However, the main possible income of such 
measurements lies in experimental investigation of naturally 
twinned materials, such as NiMnGa, where the single crystals 
of pure martensitic variants cannot be easily prepared. 



TABLE I. MEASURED AND EVALUATED EFFECTIVE ELASTIC 
COEFFICIENS OF FINELY TWINNED MARTENSITE OF CUALNI

Relative contents of the mirrored variant [%] Elastic 
Coefficient  < 1% ~ 10% 10% evaluated 

C11 [GPa] 185.3 191.2 189.7 
C22 [GPa] 151.3 150.5 150.7 
C33 [GPa] 241.9 236.4 236.0 
C44 [GPa] 63.2 64.2 63.5 
C55 [GPa] 23.9 24.1 25.5 
C66 [GPa] 62.0 62.0 61.1 
C23 [GPa] 88.0 98.2 92.2 
C13 [GPa] 67.8 64.9 65.3 
C12 [GPa] 141.8 138.8 140.7 

The result are shown in Tab.1, where the coefficients of the 
single variant (<1% of other variants) are compared to 
measured and evaluated elastic coefficients for finely twinned 
martensite, containing approximately 10% of a mirrored 
variant. The coefficients of a single variant are in good 
agreement with the results from pulse-echo measurements 
published by authors in [3]. The theoretical effective 
coefficients of the twinned structure were computed by an 
algorithm based on the Snell-Descartes law. Especially in the 
diagonal coefficients C11, C22 and C33, the agreement between 
measured and evaluated elastic coefficients  is satisfactory. 
However, the symmetry of the twinned structure deviates from 
orthotropy, which may be the reason for the discrepancy in 
determined shear coefficients.  

VI. CONCLUDING REMARKS

The inversion procedure for determination of elastic 
coefficients of anisotropic solids was generalized for an 
arbitrary oriented nonrectangular parallelepiped. The procedure 
was also stabilized by using a novel hybrid architecture of the 
optimizing algorithm, which utilizes analytical expressions of 
the Hessian of the minimized error function. Laser 
interferometry was used for association of measured 
frequencies to particular eigenmodes. The agreement between 
measured and computed shapes of the eigenmodes confirms the 
reliability of obtained elastic coefficients. 

The improved inversion procedure was applied to 
determine elastic coefficients of both the austenitic and 
martensitic phases of the CuAlNi shape memory alloy, as well 
as of effective elastic coefficient of twinned martensitic 
structures. The procedure was verified as stable, fast, and 
converging to reliable values of the elastic coefficients. 
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