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Abstract

Our aim is to present a few results concerning existence of weak solutions to unsteady flow
of incompressible non-Newtonian fluids. In particular, we are interested in dynamics of non-
Newtonian fluids of a nonstandard rheology, more general then of power-law type. In con-
sidered problems the nonlinear highest order term – stress tensor – is monotone and its be-
haviour – coercivity/growth condition – is given with help of some general convex function.
In our research we cover both cases: shear thickening and shear thinning fluids and as well as
anisotropic and non-homogenous behaviour of the stress tensor. Such a formulation requires
a general framework for the function space setting, therefore we work with non-reflexive and
non-separable anisotropic Orlicz and Musielak-Orlicz spaces.

Keywords: incompressible non-Newtonian fluids, weak solutions, Orlicz spaces, Musielak-Orlicz
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1 Introduction

We would like to recall here some of our existing results to problems capturing flows of non-
Newtonian fluids with non-standard rheology. In particular, we want to present some studies
which allow to consider the phenomena of viscosity changing significantly under various stimuli
like shear rate, magnetic or electric field described with help of some general convex function.
Therefore we may investigate materials whose properties can be described not only by the depen-
dence on constant viscosity. Our research concerns existence and properties of solutions to systems
of equations coming from fluid mechanics. We concentrate on the case of an incompressible fluid
for which equations can take the following general form

Bt%� divxp%uq � 0 in Q,

Btp%uq � divxp%ub uq � divxSSSpt, x, %,DDDuq �∇xp � %f in Q,

divxu � 0 in Q,

up0, xq � u0 in Ω,

%p0, xq � %0 in Ω,

upt, xq � 0 on p0, T q � BΩ,

(1)

where % : QÑ R is the mass density, u : QÑ R3 denotes the velocity field, p : QÑ R the pressure,
SSS the stress tensor, f : QÑ R3 given outer sources. The set Ω � R3 is a bounded domain with a
regular boundary BΩ (of class, say C2�ν , ν ¡ 0, to avoid unnecessary technicalities connected with
smoothness). We denote by Q � p0, T q � Ω the time-space cylinder with some given T P p0,�8q.
The tensor DDDu � 1

2 p∇xu�∇T
xuq is a symmetric part of the velocity gradient.

In order to close the system we have to state the constitutive relation, rheology, which describes
the relation between SSS and DDDu. In our considerations we do not want to assume that SSS has only
polynomial-structure, i.e. SSS � pκ � |DDDu|qp�2DDDu or SSS � pκ � |DDDu|2qpp�2q{2DDDu (where κ ¡ 0).
Standard growth conditions of the stress tensor, namely polynomial growth, see e.g. [11, 37]

|SSSpDDDuq| ¤ cp1� |DDDu|2qpp�2q{2|DDDu|

SSSpDDDuq : DDDu ¥ cp1� |DDDu|2qpp�2q{2|DDDu|2
(2)

can not suffice to describe nonstandard behaviour of the fluid. Motivated by the significant shear
thickening phenomenon we want to investigate the processes where the growth is faster than poly-
nomial and possibly different in various directions of the shear stress. Also the case of growth
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close to linear can be covered in this way. A viscosity of the fluid is not assumed to be constant,
can depend on density and full symmetric part of the velocity gradient as well as can be inho-
mogeneous in space (i.e. depend on the point in considered domain). Therefore we formulate the
growth conditions of the stress tensor using a general convex function M called an N�function
(the definitions of an N�function M and its complementary function M� appear in Section 4.1)
similarly as in [19, 21, 22, 24, 25, 52, 53, 54, 55, 56]:

SSSpx,DDDuq : DDDu ¥ c tMpx,DDDuq �M�px,SSSpx,DDDuqqu . (3)

Now we are able to describe the effect of rapidly shear thickening and shear thinning fluids as well
as its anisotropic and/or inhomogeneous behaviour.

The appropriate spaces to capture such formulated problem are generalized Orlicz spaces, often
called Orlicz-Musielak spaces. (In classical case, i.e. with polynomial growth conditions, the proper
space setting is standard Lebesgue and Sobolev spaces.) We also allow the stress tensor to depend
on x, this provides the possibility to consider electro- and magnetorheological fluids and significant
influence of magnetic and magnetic field on the increase of viscosity. Thus we use the generalized
Orlicz spaces, often called Orlicz-Musielak spaces (see [38] for more details). For definitions and
preliminaries of N�functions and Orlicz spaces see Section 4.1. Contrary to [38] we consider the
N�function M not dependent only on |ξξξ|, but on whole tensor ξξξ. It results from the fact that the
viscosity may differ in different directions of symmetric part of velocity gradient DDDu. Hence we
want to consider the growth condition for the stress tensor dependent on the whole tensor DDDu,
not only on |DDDu|. The spaces with an N–function dependent on vector-valued argument were
investigated in [48, 49, 50].

In our considerations condition (3) forces us to use Orlicz, Orlicz-Sobolev spaces, defined by the
N–function. We want to emphasise that we do not want to assume that M satisfies the so-called
∆2–condition. Therefore we lose a wide range of facilitating properties of function spaces that one
normally works with. Namely, if M does not satisfy the ∆2–condition then our spaces are not
reflexive, separable, smooth functions are not dense with respect to the norm. The lack of such
assumption is a reason of many delicate and deep handicaps. Therefore we need to obtain the
result using more sophisticated methods than in the classical case. Our investigations are directed
to existence and properties of solutions.

Let us emphasised that one of the main problems in our considerations is that the 42–condition
can not be satisfied and we lose many facilitating properties. An interesting obstacle here is the
lack of the classical integration by parts formula, cf. [17, Section 4.1]. To extend it for the case of
generalized Orlicz spaces we would essentially need that C8�functions are dense in LM pQq and
LM pQq � LM p0, T ;LM pΩqq. The first one only holds if M satisfies the ∆2–condition. The second
one is not the case in Orlicz and generalized Orlicz spaces. We recall the proposition from [5]
(although it is stated for Orlicz spaces with M �Mp|ξξξ|q).

Proposition 1.1 Let I be the time interval, Ω � Rd, M � Mp|ξ|q an N–function, LM pI � Ωq,
LM pI;LM pΩqq the Orlicz spaces on I � Ω and the vector valued Orlicz space on I respectively.
Then LM pI � Ωq � LM pI;LM pΩqq, if and only if there exist constants k0, k1 such that

k0M
�1psqM�1prq ¤M�1psrq ¤ k1M

�1psqM�1prq (4)

for every s ¥ 1{|I| and r ¥ 1{|Ω|.

One can conclude that (4) means that M must be equivalent to some power p, 1   p   8. Hence,
if (4) should hold, very strong assumptions must be satisfied by M . Surely they would provide
LM pQq to be separable and reflexive.

Substantial part of our studies is motivated by a significant shear thickening phenomenon.
Therefore we want to investigate the processes where the growth of the viscous stress tensor is
faster than polynomial. Hence N–function defining a space does not satisfy the ∆2–condition.
At the beginning our attention is directed to incompressible fluids with non-constant density,
see section 5 and [54] by Wróblewska-Kamińska. We include the case of different growth of the
stress tensor in various directions of the shear stress and possible dependence on some outer field.
The second problem concerns the motion of rigid bodies in shear thickening fluid, see [56]. The
bodies have a nonhomogeneous structure and are immersed in a homogenous incompressible fluid.
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Omitting in this case the assumption of ∆2–conditions has physical motivations. The requirement
for avoiding collisions is a high enough integrability of the shear stress (at least in L4). Hence it is
natural to consider an N–function of high growth e.g. exponential.

The presence of convective term in problems mentioned above allowed us to consider only shear
thickening fluids. It is a consequence of the fact that the convective term enforced the restriction
for the growth of an N -function, namely Mp�q ¥ c| � |q for some exponent q ¥ 3d�2

d�2 . If we assume
that the flow is slow, then it is reasonable to neglect the convective term and we are able to skip the
assumption on the lower growth of M (and consequently the bound for M�). It opens a possibility
to include flows of different behaviour. In particular the growth of the viscous stress tensor can be
close to linear and is prescribed by an anisotropic N–function whose complementary does not have
to satisfy the ∆2–condition and therefore we are able also to investigate the flow of shear thinning
fluid.

In the following paper we want to give the reader better insight into the above results and we
present here short overview of the considered problems.

2 Non-Newtonian fluid and motivations

Our interest is directed to the phenomena of viscosity increase under various stimuli: shear rate,
magnetic or electric field. Particularly we want to focus on shear thickening (STF) and magne-
torheological (MR) fluids. Both types of fluid have the ability of transferring rapidly from liquid
to solid-like state and this phenomenon is completely reversible, and the time scale for the trans-
mission is of the order of a millisecond. The magnetorheological fluids [57] found their application
in modern suspension system, clutches or crash-protection systems in cars and shock absorbers
providing seismic protection.

In particular we are interested in fluids having viscosity which increases dramatically with
increasing shear rate or applied stress, i.e. we want to consider shear thickening fluids, which can
behaves like a solid when it encounters mechanical stress or shear. STF moves like a liquid until an
object strikes or agitates it forcefully. Then, it hardens in a few milliseconds. This is the opposite
of a shear-thinning fluid, like paint, which becomes thinner when it is agitated or shaken. The
fluid is a colloid, consists of solid particles dispersed in a liquid (e.g. silica particles suspended in
polyethylene glycol). The particles repel each other slightly, so they float easily throughout the
liquid without clumping together or settling to the bottom. But the energy of a sudden impact
overwhelms the repulsive forces between the particles – they stick together, forming masses called
hydroclusters. When the energy from the impact dissipates, the particles begin to repel one another
again. The hydroclusters fall apart, and the apparently solid substance reverts to a liquid.

Possible application for fluids with changeable viscosity appears in military armour. The so-
called STF-fabric produced by simple impregnation process of e.g. Kevlar makes it applicable to
any high-performance fabric. The resulting material is thin and flexible, and provides protection
against the risk of needle, knife or bullet contact that face police officers and medical personnel
[6, 29, 34].

One of the example is a magnetorheological fluid, which consists of the magnetic particles
suspended within the carrier oil distributed randomly in suspension under normal circumstances.
When a magnetic field is applied, the microscopic particles align themselves along the lines of
magnetic flux. In the fluid contained between two poles, the resulting chains of particles restrict
the movement of the fluid, perpendicular to the direction of flux, effectively increasing its viscosity.
Consequently mechanical properties of the fluid may be anisotropic.

On the other hand we can consider the constitutive relation for fluids with dependence on outer
field, in particular, we mean electrorheological fluids. In this case, from representation theorem
it follows the stress tensor may possesses growth of different powers in various directions of DDD
(cf. [45, 54]). In such situation the mechanical minimal assumptions are satisfied and we can not
exclude constitutive relation of anisotropic behaviour.

We can observe that the case of stress tensors having convex potentials (additionally vanishing
at 000 and symmetric w.r.t. the origin) significantly simplifies verifying condition (3). For finding
N�functions M and M� we take an advantage of the following relation

Mpξξξq �M�p∇Mpξξξqq � ξξξ : ∇Mpξξξq (5)
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holding for all ξξξ P R3�3
sym, cf. [44]. This corresponds to the case when the Fenchel-Young inequality

for N–functions becomes an equality. Once we have a given function SSS, for simplicity consider it in

the form SSSpDDDuq � 2µp|DDDu|2qDDDu, then choosing Mpx,ξξξq �Mpξξξq �
³|ξξξ|2
0

µpαααq dααα provides that (3) is
satisfied with a constant c � 1. For such chosen M we only need to verify whether the N�function–
conditions, i.e, behaviour in/near zero and near infinity, are satisfied. The monotonicity of SSS follows
from the convexity of the potential.

Our assumptions can capture shear dependent viscosity function which includes power-law and
Carreau-type models which are quite popular among rheologists, in chemical engineering, and
colloidal mechanics (see [36] for more references). Nevertheless we want to investigate also more
general constitutive relations like non-polynomial growth SSS � |DDDu|p lnp1 � |DDDu|q or of anisotropic
behaviour e.g. SSSi,j � | � |pij rDDDusi,j , i, j � 1, 2, 3.

Our particular interest is directed here to the rheology close to linear in at least one direction
(see section 6 and [22]). We do not assume that the N� function satisfies the ∆2�condition in
case of star-shaped domains. For other domains we need to assume some conditions on the upper
growth of M , however this does not contradict with a goal of describing the rheology close to
linear. There is a wide range of fluid dynamics models obeying these conditions, we mention here
two constitutive relations: Prandtl-Eyring model, cf. [9], where the stress tensor SSS is given by

SSS � η0
ar sinhpλ|DDDu|q

λ|DDDu|
DDDu

and modified Powell-Eyring model cf. [41]

SSS � η8DDDu� pη0 � η8q
lnp1� λ|DDDu|q

pλ|DDDu|qm
DDDu

where η8, η0, λ, m are material constants. Our attention in the present section is particularly
directed to the case η8 � 0 and m � 1.

Both models are broadly used in geophysics, engineering and medical applications, e.g. for
modelling of glacier ice, cf. [31], blood flow, cf. [42, 43] and many others, cf. [2, 40, 47].

In section 6 and in [22] our considerations concern the simplified system of equations of con-
servation of mass and momentum. Indeed, the convective term divxpu b uq is not present in the
equations. The motivation for considering such a simplified model is twofold. If the flow is assumed
to be slow, then the inertial term divxpub uq can be assumed to be very small and therefore ne-
glected, hence the whole system reduces to a generalized Stokes system. Another situation is the
case of simple flows, e.g. Poisseuille type flow, between two fixed parallel plates, which is driven by
a constant pressure gradient (see [30]). With regards to blood flows the importance of considering
simple flows arises since the geometry of vessels can be simplified to a flow in a pipe. The analysis
of both models in steady case (also without convective term) through variational approach was
undertaken by Fuchs and Seregin in [15, 16].

3 State of art

The mathematical analysis of time dependent flow of homogeneous non-Newtonian fluids with
standard polynomial growth conditions was initiated by Ladyzhenskaya [32, 33] where the global
existence of weak solutions for p ¥ 1� p2dq{pd� 2q was proved for Dirichlet boundary conditions.
Later the steady flow was considered by Frehse at al. in [12], where the existence of weak solutions
was established for the constant exponent p ¡ 2d

d�2 , d ¥ 2 by Lipschitz truncation methods.
Wolf in [51] proved existence of weak solutions to unsteady motion of an incompressible fluid

with shear rate dependent viscosity for p ¡ 2pd � 1q{pd � 2q without assumptions on the shape
and size of Ω employing an L8–test function and local pressure method. Finally, the existence of
global weak solutions with Dirichlet boundary conditions for p ¡ p2dq{pd� 2q was achieved in [4]
by Lipschitz truncation and local pressure methods.

Most of the available results concerning nonhomogeneous incompressible fluids deal with the
polynomial dependence between SSS and |DDDu|. The analysis of nonhomogeneous Newtonian (p � 2
in (2)) fluids was investigated by Antontsev, Kazhikhov and Monakhov [?] in the seventies. P.L.

264 Prague, February 11-13, 2015_______________________________________________________________________



Lions in [35] presented the concept of renormalized solutions and obtained new convergence and
continuity properties of the density.

The first result for unsteady flow of nonhomogenous non-Newtonian fluids goes back to Fernández–
Cara [14], where existence of Dirichlet weak solutions was obtained for p ¥ 12{5 if d � 3, later
existence of space-periodic weak solutions for p ¥ 2 with some regularity properties of weak solu-
tions whenever p ¥ 20{9 (if d � 3) was obtained by Guilién-González in [18]. Frehse and Růžička
showed in [10] existence of a weak solution for generalized Newtonian fluid of power-law type for
p ¡ 11{5. Authors needed also existence of the potential of SSS. Recent results concerning fluids
where the growth condition is as in (2) for p ¥ 11{5 belong to Frehse, Málek and Růžička [11]. The
novelty of this paper is the consideration of the full thermodynamic model for a nonhomogeneous
incompressible fluid. Particularly in [11, 10] the reader can find the concept of integration by parts
formula, which we adapted to our case. Also more details concerning references can be found
therein.

An example of a generalized Orlicz space is a generalized Lebesgue space, in this case Mpx,ξξξq �
|ξξξ|ppxq. These kind of spaces were applied in [45] to the description of flow of electrorheological
fluid. The standard assumption in this work was 1   p0 ¤ ppxq ¤ p8   8, where p P C1pΩq
is a function of an electric field E, i.e. p � pp|E|2q, and p0 ¡

3d
d�2 in case of steady flow, where

d ¥ 2 is the space dimension. The 42–condition is then satisfied and consequently the space is
reflexive and separable. One of the main problems in our model is that the 42–condition is not
satisfied and we lose the above properties. Later in [3] the above result was improved by Lipschitz
truncations methods for Lppxq setting for SSS, where 2d

d�2   pp�q   8 was log-Hölder continuous and
SSS was strongly monotone.

First results concerning non-Newtonian fluid with the assumption that SSS is strictly monotone
and satisfies conditions (3) and monotonicity assumption on SSS were established by Gwiazda et al.
[19] for the case of unsteady flow. The stronger assumption on SSS was crucial for the applied tools
(Young measures). This restriction was abandoned in [53] by Wróblewsk-Kamińska for the case of
steady flow and in [21] by Gwiazda et al. for unsteady flow. The authors used generalization of
Minty trick for non-reflexive spaces. The above existence results were established for p ¥ 11{5 in
[21], but without including in the system the dependence on density.

In order to present some of well known results concerning application of Orlicz space setting we
recall some existing analytical results concerning the abstract parabolic problems in non-separable
Orlicz spaces with zero Dirichlet boundary condition. Donaldson in [5] assumed that the nonlinear
operator is an elliptic second-order, monotone operator in divergence form. The growth and
coercivity conditions were more general than the standard growth conditions in Lp, namely the
N–function formulation was stated. Under the assumptions on the N�function M : ξ2   Mp|ξ|q
(i.e., ξ2 grows essentially less rapidly than Mp|ξ|q) and M� satisfies the ∆2�condition, existence
result to parabolic equation was established. These restrictions on the growth ofM were abandoned
in [8].

The review paper [39] by Mustonen summarises the monotone-like mappings techniques in Or-
licz and Orlicz–Sobolev spaces. The authors need essential modifications of such notions as: mono-
tonicity, pseudomonotonicity, operators of type pMq, pS�q, et al. The reason is that Orlicz–Sobolev
spaces are not reflexive in general. Moreover, the nonlinear differential operators in divergence form
with standard growth conditions are neither bounded nor everywhere defined.

A general class of elliptic equations with right hand side integrable only in L1 space was
considered in [25] by Gwiazda et al. (parabolic case in [26]). We extend there the theory of
renormalized solutions to the setting of Orlicz spaces given by a nonhomogeneous anisotropic
N–function with non polynomial upper bound. See also [27].

4 Notation

Within the whole thesis we will use the following notation: Ω stands for bounded domain in Rd,
p0, T q is a time interval and Q :� p0, T q � Ω.

The following notation for function spaces is introduced DpΩq is a set of C8pΩq-functions
with compact support contained in Ω, VpΩq denotes functions ϕ P DpΩq such that divϕ � 0.
Moreover, by Lp,W 1,p we mean the standard Lebesgue and Sobolev spaces respectively and L2

divpΩq
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is the closure of V w.r.t. the } � }L2-norm and W 1,p
0,divpΩq is the closure of V w.r.t. the }∇p�q}Lp -

norm. Let W�1,p1 � pW 1,p
0 q�, W�1,p1

div � pW 1,p
0,divq

�. By p1 we mean the conjugate exponent to p,

namely 1
p �

1
p1 � 1. We will use Cweakpr0, T s;L

2pΩqq in order to denote the space of functions

u P L8p0, T ;L2pΩqq which satisfy puptq, ϕq P Cpr0, T sq for all ϕ P L2pΩq. If X is a Banach space
of scalar functions, then Xd or Xd�d denotes the space of vector- or tensor-valued functions where
each component belongs to X. The symbols Lpp0, T ;Xq and Cpr0, T s;Xq mean the standard
Bochner spaces. Finally, we recall that the Nikolskii space Nα,pp0, T ;Xq corresponding to the
Banach space X and the exponents α P p0, 1q and p P r1,8s is given by Nα,pp0, T ;Xq :� tf P
Lpp0, T ;Xq : sup

0 h T
h�α}τhf�f}Lpp0,T�h;Xq   8u, where τhfptq � fpt�hq for a.a. t P r0, T �hs.

By pa, bq we mean
³
Ω
apxq � bpxqdx and xa, by denotes the duality pairing. By ”�” we denote the

scalar product of two vectors and ”:” stands for the scalar product of two tensors.

4.1 Orlicz spaces. Notion and propertioes

Definition 4.1 Let Ω be a bounded domain in Rd, a function M : Ω � Rn Ñ R� is said to be an
N�function if it satisfies the following conditions: M is a Carathéodory function, Mpx,KKKq � 0 if
and only if KKK � 0, Mpx,KKKq � Mpx,�KKKq a.e. in Ω, Mpx,KKKq is a convex function w.r.t. KKK, and

lim
|KKK|Ñ0

Mpx,KKKq
|KKK| � 0 for a.a. x P Ω, lim

|KKK|Ñ8

Mpx,KKKq
|KKK| � 8 for a.a. x P Ω.

The complementary function M� to a function M is defined by

M�px,LLLq � sup
KKKPRn

pKKK : LLL�Mpx,KKKqq (6)

for LLL P Rn, x P Ω. The complementary function M� is also an N�function.
The generalized Orlicz class LM pQ;Rnq is the set of all measurable functions KKK : QÑ Rn such

that »
Q

Mpx,KKKpt, xqqdxdt   8.

The generalized Orlicz space LM pQ;Rn) is defined as the set of all measurable functionsKKK : QÑ Rn
which satisfy »

Q

Mpx, λKKKpt, xqqdxdtÑ 0 asλÑ 0.

The generalized Orlicz space is a Banach space with respect to the Luxemburg norm

}KKK}M � inf

"
λ ¡ 0 |

»
Q

M

�
x,

KKKpt, xq

λ



dxdt ¤ 1

*
.

Let us denote by EM pQ;Rnq the closure of all measurable, bounded functions on Q in LM pQ;Rnq.
The space LM�pQ;Rnq is the dual space of EM pQ;Rnq. It is easy to see that EM � LM � LM .

The functional %pKKKq �
³
Q
Mpx,KKKpxqq dxdt is a modular in the space of measurable functions

KKK : QÑ Rn. A sequence tzzzju8j�1 converges modularly to z in LM pQ;Rnq if there exists λ ¡ 0 such

that
³
Q
M

�
x, zzz

j�zzz
λ

	
dxdt Ñ 0 as j Ñ 8. We will write zzzj

M
Ñ zzz for the modular convergence in

LM pQ;Rnq.
We say that an N�function M satisfies ∆2–condition if for some nonnegative, integrable on Ω

function gM and a constant CM ¡ 0

Mpx, 2KKKq ¤ CMMpx,KKKq � gM pxq for all KKK P Rn and a.a. x P Ω. (7)

If this condition fails we lose numerous properties of the space LM pQ;Rnq like separability, density
of C8-functions, reflexivity (even in simpler case for Mpx,KKKq �Mp|KKK|q).

Depending on the considered problem we consider the N–function of various form: in full
generality like in definition above or Mpx,KKKq �MpKKKq or Mpx,KKKq �Mp|KKK|q.
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5 Generalized Navier-Stokes system

As a first we recall the result of existence of weak solutions to unsteady flow of non-Newtonian
incompressible nonhomogenous (we do not assume that density is constant) fluids with nonstandard
growth conditions of the stress tensor [54] by Wróblewska-Kamińska. We are motivated by the
fluids of anisotropic behaviour and characterised by rapid shear thickness. These studies extend
the existence theory for flows of non-Newtonian incompressible fluids to a more general class than
polynomial growth conditions [11, 10] by formulating the problem in nonhomogeneous in space
( x–dependent) anisotropic Orlicz setting as in [19, 21, 53]. Moreover, we want to complete the
results the reader can find therein by including continuity equation (1)1 to the considered system
and dependence of SSS on density of the fluid, namely we do not assume that density is constant.
Additionally we are able to obtain better regularity of solution in time than in [11, 10, 19, 21, 53],
namely in the Nikolskii space.

In particular we assume also that the stress tensor SSS : p0, T q �Ω�R��R3�3
sym Ñ R3�3

sym satisfies
(R3�3

sym stands for the space of 3� 3 symmetric matrices):

S1 SSSpt, x, %,KKKq is a Carathéodory function (i.e., measurable function of t, x for all % ¡ 0 and
KKK P R3�3

sym and continuous function of % and KKK for a.a. x P Ω) and SSSpt, x, %,000q � 000.

S2 There exist a positive constant cc, N�functions M : Ω � R3�3 Ñ R� and M� which denotes
the complementary function to M such that for all KKK P R3�3

sym, % ¡ 0 and a.a. t, x P Q it
holds

SSSpt, x, %,KKKq : KKK ¥ cctMpx,KKKq �M�px,SSSpt, x, %,KKKqqu. (8)

S3 SSS is monotone, i.e. for all KKK1,KKK2 P R3�3
sym, % ¡ 0 and a.a. x P Ω

rSSSpt, x, %,KKK1q � SSSpt, x, %,KKK2qs : rKKK1 �KKK2s ¥ 0.

Definition 5.1 We call the pair %, u a weak solution to (1) if

0   %� ¤ %pt, xq ¤ %� for a.a. pt, xq P Q,

% P Cpr0, T s;LqpΩqq for arbitrary q P r1,8q,

Bt% P L
5p{3p0, T ; pW 1,5p{p5p�3qq�q

u P L8p0, T ;L2
divpΩ;R3qq X Lpp0, T ;W 1,p

0,divpΩ;R3qq XN1{2,2p0, T ;L2
divpΩ;R3q

DDDu P LM pQ;R3�3
symq and p%u,ψq P Cpr0, T sq for all ψ P L2

divpΩ;R3q

» T
0

xBt%, zy � p%u,∇xzq dt � 0 (9)

for all z P Lrp0, T ;W 1,rpΩqq with r � 5p{p5p� 3q, i.e.» s2
s1

»
Ω

%Btz � p%uq �∇xz dxdt �

»
Ω

%zps2q � %zps1qdx

for all z smooth and s1, s2 P r0, T s, s1   s2 and

�

» T
0

»
Ω

%u � Btϕ� %ub u : ∇xϕ� SSSpt, x, %,DDDuq : DDDϕdxdt

�

» T
0

»
Ω

%f �ϕ dxdt�

»
Ω

%0u0 �ϕp0qdx for all ϕ P Dpp�8, T q;Vq,
(10)

and initial conditions are achieved in the following way

lim
tÑ0�

}%ptq � %0}LqpΩq � }uptq � u0}
2
L2pΩq � 0 for arbitrary q P r1,8q. (11)
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Theorem 5.1 Let M be an N�function satisfying for some c ¡ 0, rC ¥ 0 and p ¥ 11
5 the condition

Mpx,ξξξq ¥ c|ξξξ|p � rC (12)

for a.a. x P Ω and all ξξξ P R3�3
sym. Let us assume that the conjugate function

M� satisfies the ∆2 � condition and lim
|ξ|Ñ8

inf
xPΩ

M�px, ξq

|ξ|
� 8. (13)

Moreover, let SSS satisfy conditions S1.-S3. and u0 P L2
divpΩ;R3q, %0 P L8pΩq with 0   %� ¤

%0pxq ¤ %�   �8 for a.a. x P Ω and f P Lp
1

p0, T ;Lp
1

pΩ;R3q. Then there exists a weak solution
to (1).

The all details on the proof of the above theorem can be found in [54], for some partial results
and necessary methods see also [53, 21]. The first step of the proof of existence of a weak solution is
the Galerikn approximation for the considered problem and existence of an approximate solution.
The main difficulty then is to show the proper convergences in nonlinear terms. The result is
achieved by a monotonicity method adapted to non-reflexive spaces [53, 21] and the compensated
compactness method.

Using the result mentioned above in [56, 55] we consider the problem of motion of one or
several nonhomogeneous rigid bodies immersed in a homogeneous non-Newtonian fluid occupying
a bounded domain. Therefore the fluid flow in the system is of (1)-type which is completed with the
equations describing the motion of rigid bodies. We use here the fact, proved by Starovoitov, that
two rigid objects do not collide if they are immersed in a fluid of viscosity significantly increasing
with increasing shear rate. The method we use in order to solve the problem is, in the first step, to
replace the rigid object by a fluid of high viscosity becoming singular in the limit. This idea was
developed by Hoffman [28] and San Marin at al. [46]. Since we consider an incompressible fluid,
the existence and estimates for the pressure function are not crucial from the point of existence of
weak solutions. This is due to the fact that in a weak formulation the pressure function disappears.
In this case we have to localise the problem only in the fluid part of the system. Therefore we need
to deliver the decomposition and local estimates also for the pressure function. To this end we use
the Riesz transform which in general is not continuous from Orlicz space to itself (it is the case if
the N–function and its complementary satisfy the ∆2–condition). Therefore the space where the
part of our pressure function is regular is larger than the space containing the nonlinear viscous
term. Moreover we are not able to use theorems of Marcinkiewicz type and interpolation theory in
the same form as in Lebesgue or Sobolev spaces. For this reason the passage in terms associated
with the regular part of the pressure function is much more demanding than in [13].

6 Generalized Stokes system

In the above two problems the presence of a convective term divpubuq enforces at least polynomial
growth of tensor SSS with respect to DDDu. With these assumptions we are able to investigate only the
case of shear thickening fluids. This motivates us to consider the generalized Stokes system:

Btu� divSSSpt, x,DDDuq �∇p � f in p0, T q � Ω,

divu � 0 in p0, T q � Ω,

up0, xq � u0 in Ω,

upt, xq � 0 on p0, T q � BΩ,

(14)

where Ω � Rd is an open, bounded set with a sufficiently smooth boundary BΩ, p0, T q is the time
interval with T   8, Q � p0, T q � Ω, u : Q Ñ Rd is the velocity of a fluid and p : Q Ñ R the
pressure, SSS�IIIp is the Cauchy stress tensor. Here we assume that SSS satisfies the following conditions

(S1) SSS is a Carathéodory function (i.e., measurable w.r.t. t and x and continuous w.r.t. the last
variable).
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(S2) There exists a function M : Rd�dsym Ñ R� and a constant c ¡ 0 such that for all ξξξ P Rd�dsym

SSSpt, x, ξξξq : ξξξ ¥ cpMpξξξq �M�pSSSpt, x, ξξξqqq. (15)

(S3) For all ξξξ,ηηη P Rd�dsym and for a.a. t, x P Q

pSSSpt, x, ξξξq � SSSpt, x,ηηηqq : pξξξ � ηηηq ¥ 0.

The following result of existence of weak solutions to the generalized Stokes system with the
nonlinear term having growth conditions prescribed by an anisotropic N�function. Our main
interest is directed to relaxing the assumptions on the N�function and in particular to capture
the shear thinning fluids with rheology close to linear. Additionally, for the purpose of the existence
proof, a version of the Sobolev–Korn inequality in Orlicz spaces is proved in [22].

Theorem 6.1 ([22]) Let condition D1. or D2. be satisfied

(D1) Ω is a bounded star-shaped domain,

(D2) Ω is a bounded non-star-shaped domain and mprq ¤ cmppmprqq
d

d�1 � |r|2 � 1q for all r P R�,
and m satisfies ∆2�condition.

Let M be an N�function and SSS satisfy conditions (S1)-(S3). Then, for given u0 P L2
divpΩ;Rdq

and f P Em�pQ;Rdq there exists u P ZM0 such that»
Q

�u � Btϕ� SSSpt, x,DDDuq �DDDϕdxdt �

»
Q

f �ϕdxdt�

»
Ω

u0ϕp0qdx (16)

for all ϕ P Dp�8, T ;Vq, where

ZM0 �tu P L8p0, T ;L2
divpΩ;Rdqq, DDDu P LM pQ;Rn�nsym q | D tuju8j�1 � Dpp�8, T q;Vq :

uj
�
á u in L8p0, T ;L2

divpΩ;Rdqq and DDDuj
�
á DDDu weakly star in LM pQ;Rd�dsymqu.

(17)

and two functions m, m : R� Ñ R� are defined as as follows

mprq :� min
ξξξPRd�d

sym ,|ξξξ|�r
Mpξξξq, mprq :� max

ξξξPRd�d
sym ,|ξξξ|�r

Mpξξξq. (18)

In particular the considerations of the above problem, which the reader can find in [22] by
Gwiazda et al., allow us to investigate the case of shear thinning fluids, whose viscosity decreases
when the shear rate increases. Let us notice that if we assume that the flow is slow, the density
is constant and so the system stated in (1) can be reduced to (14). The problem is considered in
anisotropic Orlicz spaces. In the proof we need to provide the type of the Korn-Sobolev inequality
for anisotropic Orlicz spaces when the ∆2–condition is not satisfied. We show also that the closure
of smooth functions with compact support with respect to two topologies is equal: the convergence
of symmetric gradients in modular and in weak star topology in Orlicz space. Then we are able to
give the formula for integration by parts.

These studies consists of a new analytical approach to the existence problem. In the previous
studies the main reason to assume that M� satisfies the ∆2�condition was providing that the
solution is bounded in an appropriate Sobolev space W 1,qpΩq which is compactly embedded in
L2pΩq. However, as a byproduct, we gained that LM�pQ;Rd�dsymq � EM�pQ;Rd�dsymq is a separable
space. The naturally arising question is whether the existence of solutions can still be proved after
omitting the convective term and relaxing the assumptions on M and M�. The preliminary studies
in this direction were done for an abstract parabolic equation, cf. [20]. Also the convergence of a full
discretization of quasilinear parabolic equation can be found in [7] by Emmrich and Wróblewska-
Kamińska. Theorem 6.1 give a non-trivial extension of these considerations for the system of
equations.
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in Orlicz spaces Discrete and Continuous Dynamical Systems - A. 32 (2012), Issue 6, 2125-2146.
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