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Abstract 
Basic ideas of (an)isotropy analysis and rating of turbulent flows are presented oriented on 

point velocity data analysis. Two types of anisotropy invariant maps are proposed. Practical 

example is shown. 
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1 Introduction 

Our knowledge of turbulent flows is still far from being satisfactory. The most theories 

apply only to “well developed” turbulent flow which is characterized by unrealistic 

features. For example the Kolmogorov theories hold for isotropic, homogeneous 

turbulent field characterized by turbulence Reynolds number approaching infinity. 

Homogeneity and isotropy are considered in statistical sense.  

Any real case is characterized by some departures from that ideal case. It is essential to 

quantify the above mentioned features, to verify relevance of the theories for the given 

case. 

In the presented paper we will concentrate on quantification of isotropy of the 

turbulence, characterized by time series of all 3 velocity component in the given point in 

space. The isotropy is evaluated in statistical sense on the basis of variances and 

covariances analysis. Using this data we could evaluate the complete tensor of Reynolds 

stress. The subsequent (an)isotropy analysis is oriented on this kind of input 

information. 

2 Basic definitions 

Dynamics and 3D structure are the basic attributes of a turbulent flow, however there 

are some others as range of scales, vorticity, dissipativity etc. Statistical approach to 

turbulence relies on the velocity field information in a single point in space. Then the 

relevant information is contained in Reynolds stress tensor.  

2.1 Reynolds stress tensor 

The Reynolds stress is the component of the total stress tensor in a fluid obtained from 

the averaging operation over the Navier-Stokes equations to account for turbulent 

fluctuations in fluid momentum. The Reynolds stress tensor is defined as 

 ij i ju u   , (1) 

where   stands for fluid density and iu  is i-th velocity component fluctuation. From 

the mathematical point of view the Reynolds stress tensor is nothing but a symmetrical 

tensor of second order – matrix. From linear algebra it is known that any symmetrical 

matric could be decomposed into isotropic 
I

ij  and anisotropic 
A

ij  parts: 

 I A

ij ij ij    . (2) 
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Isotropy is here considered as independence on the direction in physical space described 

by Cartesian coordinate system. The decomposition could be performed in the 

following way: 

 
1

;
3

I A I

ij kk ij ij ij ij        . (3) 

Note that isotropic part is equal to unity matrix multiplied by a constant equal to one 

third of turbulent kinetic energy or a matrix trace if you like.  

For further analysis the anisotropic part is considered in its nondimensional form 

 
3

A

ij ij ij

ij

kk kk

b
  

 
   . (4) 

The nondimensional anisotropic part of Reynolds stress tensor, or simply anisotropy 

tensor ijb , is considered to be the fundamental characteristic of the turbulence 

anisotropy in the given point. Of course, if this tensor is vanishing, the flow is 

considered to be perfectly isotropic. 

The anisotropy tensor is nondimensional, its value is not affected by any multiplicative 

constant applied to the stress tensor. This implies that this is identical for Reynolds 

stress tensor and correlation matrix. 

In following part of the paper we will go through the detailed analysis and 

quantification of this tensor significance. 

2.2 Anisotropy invariants 

The nondimensional anisotropic part of Reynolds stress tensor could be characterized 

by a set of the eigenvalues and the related eigenvectors. The eigenvalues, called the 

principal stress   are defined using Cayley-Hamilton theorem in the form of the 

characteristic equation: 

 3 2 0I II III      . (5) 

The invariants , ,I II III  are defined as follows: 

 

 

,

2,

3 det .

kk

ij ji

ij jk ki ij

I b

II b b

III b b b b



 

 

  (6) 

Please note that any anisotropic tensor is traceless from the definition, so the invariant I 

is identically equal to 0. 

3 (An)isotropy rating 

From the anisotropy tensor definition it can be seen that none of its eigenvalues can be 

smaller than −1/3, corresponding to the vanishing of turbulent kinetic energy in that 

component, nor greater than 2/3, corresponding to the vanishing of other two 

components (see [2]). This suggests that the range of invariants of the anisotropy tensor 

is limited by these values. Indeed, Lumley has demonstrated ([2]) that all the possible 

states of turbulence must be found within the turbulence triangle (so called “Lumley 

triangle”) in invariant coordinates as shown in Figure 1. The ordinate and the abscissa 

of this figure are the negative second invariant (−II ) and the third invariant (III) of the 

anisotropy tensor, respectively. This graph is called the anisotropy invariant map 

(AIM). 
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Figure 1: The anisotropy invariant map (cases see Table 1) 

 

The anisotropy invariant map could be subjected to subsequent analysis. 

3.1 Anisotropy invariant maps 

The origin of the AIM (a): II = III = 0 corresponds to three-dimensional (3D) isotropic 

turbulence. 

The two-dimensional (2D) isotropic (i.e. axisymmetric) state of turbulence, where one 

component of turbulent kinetic energy vanishes with the remaining two being equal, is 

at the left-hand corner of the triangle (e). The one-dimensional (1D) state of turbulence 

with only one turbulence component is at the point (d). The isotropy state of the 

2 components (axisymmetric) is depicted by green and blue lines. The turbulence along 

the straight red line connecting the points (e) and (d) is in the 2D state. 

The anisotropy invariant map is useful environment in subsequent study of the isotropy 

development of turbulent flow field. However the shape of the allowed states area is 

very narrow and the borders are obviously nonlinear. To improve the situation Choi [1] 

has suggested the modified invariants   and   defined by 

 3 22, 3III II    . (7) 

The new definition suggests straight lines for axisymmetric cases, however the 2D case 

is now characterized by nonlinear expression. Situation is shown in Figure 2.  
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Figure 2: The linearized anisotropy invariant map (cases see Table 1) 

 

The new representation offers much better resolution of the graph close to the 3D 

isotropy situation. 

3.2 Physical interpretation 

The energy ellipsoid of homogeneous turbulence has a spherical form. 

After an axisymmetric contraction it has a pancake shape, since one component of the 

turbulent kinetic energy is smaller than the other two (green line). In an axisymmetric 

contraction the turbulence eddies are stretched in the axial direction, making them a rod-

like shape. 

The energy ellipsoid of turbulence after an axisymmetric expansion has a cigar shape 

since one component of turbulent kinetic energy is greater than the other two (blue line). 

In this case, however, the turbulence eddies seem to have neither unique structure nor 

preferred direction as the turbulence is compressed in the axial direction while stretched 

in the other directions.  

The 2D state, when fluctuations in one specific direction vanish, is represented by the 

flat elliptical shape (red line). 

In Table 1 the possible cases are described in details, information adopted from [3]. 

First of all, the substance of turbulence is characterized. Then, the invariances and 

corresponding eigenvalues are given. Finally, the shape and geometry of the energy 

ellipsoid is shown. The cases are equipped with letter labels with reference to Figures 1 

and 2. 
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Turbulence 

state 

Invariances Eigenvalues Shape Geometry 

a 

 

Isotropic 

0I II III    0i   Sphere 

 
b 

 

Axisymmetric 

(cigar shape) 

 
2 3

3 2II III   3

2 3

0 1 3

1 6 0



 

 

   
 

Prolate 

spheroid 

 
c 

 

Axisymmetric 

(pancake 

shape) 

 
2 3

3 2II III  

 

2

1 3

1 3 0

0 1 6



 

  

  
 

Oblate 

spheroid 

 
d 

 

1D 

2 27

1 3

III

II



 
 

1

2 3

2 3

1 3



 



  
 

Line 

 
e 

 

2D, 

axisymmetric 

 

1 108

1 12

III

II

 

 
 

1 3

2

1 6

1 3

 



 

 
 

Disk 

 
f 

 

2D 

 3 1 27II III  

 

1 3

2

1 3

1 3

 



 

 
 

Ellipsoid 

 
Table 1 Characteristics of selected situations 

 

To quantify the 3D isotropy of the turbulence Choi [1] has introduced the anisotropic 

factor F: 

 1 27 9F III II     (8) 

The F vanishes whenever turbulence becomes 2D, and it becomes unity when 

turbulence enters a 3D isotropic state. 
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4 Practical example 

A practical example of (an)isotropy evaluation will be shown. 

The measurement has been carried out using the 3 hot wire probe in grid generated 

turbulence. The TSI probe is able to indicate simultaneously all 3 components of 

velocity in the given measuring point. The experiments have been carried out in the 

ONERA wind tunnel S1 in Modane (France). Cross section was of diameter 8 m, grid 

generator made from cylindrical rods, mash size about 0.75 m. The velocity was in the 

case shown here about 25 m/s, position about 7.5 m behind the grid. Velocity 

components were oriented u in the streamwise direction, v and w in the spanwise 

directions horizontal and vertical respectively (instead of u1, u2 and u3 used above). 

 
Figure 3: Hodograph of the velocity vector 

 

 
Figure 4: Projections of the hodograph 

 

In Figure 3 there is hodograph of the instantaneous velocity vector in the measuring 

point during 1 s record (250 thousands values). Colour represents the w values. The 

projections of the points cloud are shown in Figure 4.  

The clouds are more or less symmetrical, flow is obviously close to isotropy state. 
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Now, the covariance matrix of the given case is evaluated: 

 

1.500 0.033 0.144

0.033 2.389 0.196

0.144 0.196 2.345

i ju u

  
 

  
 
   

. (9) 

The covariance matrix is symmetrical with negative small extradiagonal values. Kinetic 

energy k and intensity of turbulence were: k = 3.117 m2/s2, Tu = 5.77 %, the ratios of 

standard deviations in various directions were evaluated to demonstrate anisotropy: 

v/u = 1.262, w/u = 1.250, v/w = 1.010. The state could be identified to be close to 

pancake axisymmetric situation (c) – contraction in streamwise direction.  

The isotropic and anisotropic parts of the covariance matrix are as follows: 

 

2.078 0 0

0 2.078 0

0 0 2.078

I

i ju u

 
 


 
  

, (10) 

 

0.578 0.033 0.144

0.033 0.311 0.196

0.144 0.196 0.267

A

i ju u

   
 

  
 
   

. (11) 

All the above shown matrices are of physical dimension [m2/s2], of course. Now, the 

nondimensional anisotropic matrix ijb  is to be calculated: 

 

0.0927 0.0053 0.0231

0.0053 0.0499 0.0314

0.0231 0.0314 0.0428

ijb

   
 

  
 
   

. (12) 

From this matrix the invariants are determined easily using (6): I = 0, II = -8.019 10-3, 

III = -1.420 10-4,  = -0.041,  = 0.052. 

 
Figure 5: Example case in the linearized anisotropy invariant map 
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The situation is depicted in the linearized anisotropy invariant map in Figure 5. The red 

point close to the green line represents the example in question. 

In the end, the anisotropic factor is calculated for the case: F = 0.924. 

5 Conclusions 

The analysis method of isotropy or anisotropy properties of a turbulent data obtained 

using point velocity measurement is shown. Two types of graphical representation of 

the isotropy invariants are suggested – nonlinear and linearized anisotropy invariant 

maps. 

The representation of isotropy is demonstrated on example of real data from 

experiments. 
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