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Abstract 

Modes selection of different instabilities that lead to turbulence between two concentric 
spheres, the inner rotating while the outer is at rest, is investigated through visualization 
and polarography method. The exploration of the flow regimes was carried out for a 
dimensionless gap width δ= (R2-R1)/R1 of 0.107, an aspect ratio Г=H/d in the interval (17; 
21) and a Taylor number in the interval (22; 1500). The influence of these parameters on 
the appearance of instabilities is elucidated. The evolution of the flow patterns is visualized 
and quantified by the wall velocity gradients and their fluctuations. The case considered 
here is closely related to the polarographic method in a spherical shell. At our best 
knowledge, this has not been studied to the present day. 
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1 Introduction 
The spherical Taylor-Couette flow is an important research topic since many years. Its 
scientific relevance lies not only in the simplicity of the system but also in its 
applicability to astrophysical objects and geophysical motions such as atmospheres, 
oceans, and planetary cores. 

The first instability of the basic flow leads to the formation of Taylor vortices in the 
equatorial region, as reported by Khlebutin [1], Sawatzki [2], Munson [3], Yavorskaya 
[4], Wimmer [5,6], Bühler [7,8], Schrauf, G. [9], C. Egbers [10] and R. Hollerbach  
[11].  

Khlebutin [1]  was the first who experimentally detected the existence of Taylor cells 
in a spherical flow system for a dimensionless gap range of 0.19 ≤ δ ≤ 0,371. He carried 
out flow visualization experiments and torque measurements in the range of 0.037 ≤ δ ≤ 
1.515, but for δ≥0.44, no Taylor vortices were observed. C. Egbers and H.J. Rath [10] 
have investigated experimentally of the existence of Taylor vortices and different 
instabilities in spherical Couette flow. For wide gaps (0.33 ≤δ≤ 0.5), however, Taylor 
vortices could not be detected. Wimmer [12] showed that the flow modes could be 
produced by different acceleration histories of the inner sphere.  

Another study on torque measurements as a function of flow regimes was done by 
Munson and Menguturk [3]. Koichi Nakabayachi et al [13] traced the evolution of non-
dimensional RMS (root mean square) values of Vφ and Vθ divided by U0. Vφ and Vθ   
stand for fluctuations of azimuthal and meridian velocity components, respectively. U0 
stands for peripheral velocity of rotating inner sphere. D. Schmitt et al [14] have studied 
experimentally a rotating spherical Couette flow in a dipolar magnetic field. They focus 
on the time dependence of the electric potential differences between electrodes located 
on the outer sphere and on the time correlations between these differences. On the other 
hand, several numerical studies were carried out. Bar-Yoseph et al. [15,16] treated both 
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concentric and eccentric spherical gaps for two different radii ratios of a medium size 
gap by means of finite-element method. Mamun and Tuckerman [17] examined 
asymmetry and Hopf bifurcation in spherical Couette flow using Newtonian fluids. 
They presented bifurcation diagrams along with torque characteristics. R J Yang [18] 
applied in his simulations of the axisymmetric flow fictitious symmetric boundary 
conditions to find all possible flow modes. Li Yuan [19] has discussed the wavy and 
spiral Taylor-Gortler vortices in medium spherical gaps (δ=0.14 and 0.18). Kelly et al. 
[20] studied linear wave modes restored by the Coriolis force. They proposed selection 
mechanisms to explain the presence of the particular observed modes. 

We aim, in this paper at exploring experimentally the spherical Taylor-Couette flow. 
The ultimate goal is the evolution of the structures during the laminar-turbulent 
transition. The results obtained allow us to present the evolutions of the velocity 
gradient S and the fluctuating rate s’/S as a function of the Taylor number for different 
values of the aspect ratio Γ. 

2 Experimental conditions 
The experimental setup consists of two concentric spheres made of transparent 
Plexiglas, with the inner sphere rotating and the outer one stationary (Fig.1). The outer 
and inner spheres have a radius of R2=54.9 mm and R1= 49.6mm, respectively. The 
corresponding non-dimensional gap width δ = d/R1 is equal to 0.107. The definitions of 
geometrical parameters are similar to that used in cylindrical Taylor-Couette systems, 
i.e. the gap width d = R2 – R1 = 5.3 mm and the aspect ratio   Γ = H / d where H is the 
height of liquid varying in the spherical gap. Another important control-parameter 
coming into account is the acceleration rate. This because the occurring flow pattern 
during the transition to turbulence are also determined by the history of the flow, i.e. it 
depends on whether the Taylor number is increased or decreased, quasi stationary or 
fast. 

The inner sphere is driven by a dc motor at a speed between 0.01 and 3.01rev/s. The 
fluid temperature is given by a digital thermometer and maintained constant within 
0.1°C. The working fluid is an aqueous solution of ferri-ferro-potassium cyanide in an 
equimolar concentration of 2 mol/m3 with an excess chloride of potassium (300kg/m3). 
Four platinum probes 0.5 mm diameter served as cathodes and were flush mounted with 
the inner wall of the outer sphere at angles of θ1= 82.5°, θ2= 84°,θ3= 85.5° and θ4= 
88.5° (Fig. 1). The anode was a platinum sheet (50×20mm) fixed at the bottom of the 
outer sphere. 

The electrochemical method has been applied to the study of Taylor-Couette systems 
since the early 1970s by Cognet [21]. This method makes use of the mass transfer in the 
vicinity of the working (measuring) electrode. The principle of this method is to impose 
on the measuring electrode (probe) a potential which is different from the equilibrium 
one. In this way an electrochemical reaction takes place and the probe active surface in 
contact with the solution becomes the site of ion exchange. The motion of ions is the 
result of the migration motion due to the electrical field, of the convection of the flow 
circulation and of the molecular diffusion due to the gradient concentration of active 
ions in the bulk of the liquid and on the electrode. The migration is suppressed by 
addition of a supporting electrolyte (potassium chloride). In the quasi-steady boundary 
layer approximation (Leveque, [22]) the velocity gradient S at the electrode is related to 
the limiting diffusion current by the relation 
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where I is the measured electric current, D the diffusion coefficient, R the electrode 
radius, F the Faraday constant, n the number of electrons involved in the 
electrochemical reaction and c the concentration of active species in the bulk. 
 

 
Figure 1: Experimental setup. 1, 2, 3, 4 stand for measuring electrodes. 

 
The flow structures were visualized by adding 2% by volume of Kalliroscope into 

the electrochemical solution. Video and limiting diffusion currents were recorded 
simultaneously. The analysis of the measured current permitted the study of temporal 
variations of flows. The signals were treated in two stages: firstly the mean component 
was calculated by averaging the signal recorded during 5 min, and then the signal is 
high pass filtered to remove the mean component and to obtain only the fluctuations 
intensity. The analogical-digital conversion is by means of a PC-card (NI 6008) 
connected to a computer. The temporal behavior of the flow was characterized by power 
spectra that were obtained by FFT MATLAB algorithm.  

3 Results 
Different flow stages were identified in terms of the Taylor number, defined as: 
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where Ω is the angular velocity of the inner sphere and ν the kinematic viscosity. The 
following paragraphs describe the flow patterns and wall velocity gradient 
corresponding to particular ranges of the Taylor number which were adjusted by 
variation of angular velocity. 
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Flow without Taylor vortices, Ta<44 

The rotation rate of the inner sphere was quasi statically increased from rest. For Taylor 
numbers in the interval 0<Ta<44, the flow is stable and no structures are observed. As 
Ta close to 0, the flow is characterized by streamlines in the form of concentric circles 
with circumferential velocity component expressed by (Bühler [8]) 

θϑ sin
)(

)(
),(

3
2

3
1

2

3
2

33
1

RRr

RrR
rv

−
−Ω=   (3) 

There is a balance between inertial forces and viscous forces. The meridian and radial 
velocity components are zero. As Ta close to 0 the wall velocity gradient at the outer 
sphere yield: 
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For higher values of Ta, the meridian and radial velocity components are non zero and 
the streamlines form spirals oriented from equator to the pole at the outer sphere and in 
the inverse direction at the inner sphere (Bühler [8]). However, this secondary flow is so 
slow that the spirals are not visible. The measured wall velocity gradient corresponds 
practically to Eq. (4). Bartels [23] and Bühler [8] denote this flow as mode I. In the 
laminar flow Ta<44 the measured velocity gradient is proportional to Taylor number 
S∼Ta. 

Taylor vortices, 44 < Ta < 47 

At the critical value of Taylor number Tc1 = 44, the onset of Taylor vortices took place. 
The final flow structure is composed of four cells, i.e. a symmetrical configuration of a 
pair of cells on each side of the equator (Fig.2). The streamlines in the rest of spherical 
gap still have a form of spirals. They are not visible due to slow motion. However, the 
onset of the first instability for SCF was approximately given by Rec = 49δ-3/2, 
Khlebutin [1]; after that, this power law was improved to Rec= 41.3(1+δ)-3/2 for δ<0.3 
(Nakabayashi [24]). 

 

         
Figure 2: (a) Streamlines of the vortices (inner sphere rotates, outer one at rest, Wimmer 

[12]), (b) Visualization of the first instability at Tc1= 44,Γ=20.75. 
 

On the other hand, the wall velocity gradients measured by three probes are shown in 
Fig. 3.They increase slightly in this range. 

a b 
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Figure 3: Evolution of the mean wall velocity gradient versus Taylor number. Open 
circles stand for probe 1and solid circles for probe 3. 

 
Taylor vortices and spirals, 47 ≤Ta < 53  

At the Taylor number Tc2= 47, a second regime occurred. The flow took a form of four 
Taylor cells at the equator and four spirals at each hemisphere; see sketch in Fig. 4a. 
The spirals are inclined between 2° and 10° with respect to the equator. As the angular 
velocity was further increased, additional spirals appeared and occupy the entire fluid. 
An increase in wall velocity gradient was observed at the two probes (Fig.3), but the 
values were still independent of time indicating that the flow was stationary. 

 

    
 

Figure 4: (a) Taylor cells and spirals. (b) Wavy Taylor cells and spirals. 
 

The non-dimensional fluctuations intensity, s’/S, values sharply increase with the 
occurrence of the spiral TG vortices as showed in figure 5. With increasing Taylor 
number, they remain approximately constant. But beyond around TC7=680, they 
suddenly decrease, because the velocity fluctuations attenuate and become zero. We 
shall call this phenomenon as the relaminarization. Koichi Nakabayachi and coauthors 
[13,25] found numerically and experimentally by a laser Doppler velocimeter method 
the same behavior of the curve of our work. 
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Figure 5: Evolution of non-dimensional fluctuations intensity, s’/S, versus Taylor 
number for Γ=20. Open circles for probe 1and solid circles for probe 2. 
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Figure 6: Evolution of non-dimensional fluctuations intensity, s’/S, versus Taylor 

number for different aspect ratio Γ. Solid circles stand for Γ=20, half solid circles for 
Γ=19 and open circles for Γ=18.  

 
Wavy Taylor vortices and spirals, 53 ≤Ta <62 

Regime composed of four wavy Taylor vortices at the equator and four spirals at each 
side of the Taylor cells occurred at a critical value Tc3= 53 (Fig. 4b). The amplitude of 
the waves increased with the distance from equator where it was very small. The wall 
velocity gradient increased with Taylor number (Fig.3), and varied with of meridian 
position and time. The amplitude of fluctuations s’/S increased rapidly with Taylor 
number (Figs 5 and 6). 
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Figure 7: (a) Spiral Mode and Wavy Mode visualization, Ta=58. (b) Spiral Wavy Mode 

visualization, Ta=126. 
 
Wavy Taylor vortices and wavy spirals, 62 ≤ Ta < 227 

At the critical value Tc4=62, four wavy Taylor vortices were present at the equator. The 
spirals in the rest of the gap became wavy (Fig. 7b).The spirals propagated slowly from 
the equator to the poles at an increasing velocity with time. The mean value of wall 
velocity gradient versus Ta increased in all measured positions (Fig. 3). The 
experimental absolute value uncertainty in wall shear rate measurements, was of 7%.  

At a critical number Tc5=227, azimuthal waves in the entire gap were observed 
(Fig. 9). With increasing speed, the flow pattern becomes progressively chaotic. 

 

Figure 9: Wavy mode. 
 

Turbulent regime, Ta ≥ 465 

The near-turbulence regime manifested itself by the appearance of fluctuations at the 
poles at a Taylor number of Tc6=465. These fluctuations propagated gradually into the 
equatorial part. 

With an increase in rotation rate the azimuthal waves gradually attenuated. At a 
critical value of Tc7=680 the flow in four Taylor vortices at the equator is turbulent and 
the rest of the gap is filled with chaotic flow (Fig. 10). The power spectrum was flat 
without any dominant frequency (Fig.8). The two electrodes showed a sharp drop of 
fluctuations at Ta=680 (Fig. 5) and this drop occurred also at different aspect ratios 
(Fig. 6). 

At a critical value Tc8=1192, a regime of fully developed turbulence started in the 
whole gap. 
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Figure 10: Chaotic flow at Ta=680. 

4 Conclusions 
The polarographic technique is used for the first time in the configuration of the device 
for measuring spherical parietal velocity gradient.  
Thus, the critical values and the route to chaos are determined. Taylor vortices were 
observed at low Taylor numbers (44 < Ta < 47). They occurred gradually until the 
appearance of four cells. With an increase in rotation rate, we got the following 
sequence of regimes: Taylor vortices and spirals (47 ≤Ta < 53), wavy Taylor vortices 
and spirals (53 ≤Ta<62), wavy Taylor vortices and wavy spirals (62 ≤ Ta < 227), 
chaotic regime (227≤ Ta <465), turbulent regime (Ta ≥ 465) and fully developed 
turbulence (Ta=1192). 

The analysis of the results and in particular the evolution of parietal velocity gradient 
in the number of Taylor helped to highlight the different flow regimes when gradually 
increasing the speed of rotation of the sphere. The evolution at the mean wall velocity 
gradient with Ta was linear until Ta=47, then the increase was more important until 
Ta=227.  

An important increase of the fluctuations of the wall velocity gradient measured 
close to the equator started at Ta=53. The important fluctuations lasted until Ta=465, 
where a sharp decrease as the consequence of turbulent flow without any cell is 
observed At these Ta, the azimuthal waves gradually attenuated, fluctuations of chaotic 
type settled down and the flow degenerated to a fully turbulent motion at last. 

The wavy modes were characterized by sharp peaks on power spectra where as the 
chaotic and turbulent flow resembled white noise. 

Our experimental results by polarographic method are in good agreement with the 
root-mean-square values found by Nakabayashi et al [25] in the presence of laser-
Doppler velocimetry probe in measurements of the flow. The polarographic method has 
the advantage of access to measurements at the inner wall of the outer sphere. We can 
conclude that both techniques complement for better exploration of the flow between 
the two spheres. 
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