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Abstract

We study the homogenization problem for the evolutionary Navier-Stokes system under the
critical size of obstacles. Convergence towards the limit system of Brinkman’s type is shown
under very mild assumptions concerning the shape of the obstacles and their mutual distance.
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1 Statement of the problem

We consider a bounded spatial domain Ω ⊂ R3, together with a family of obstacles (compact sets)

T 1
ε , . . . , T

N(ε)
ε , parameterized by ε→ 0. The motion of an incompressible fluid is governed by the

Navier-Stokes system of equations

divxu = 0 in (0, T )× Ωε, (1)

∂tu + divx(u⊗ u) +∇xp = divxS + fε in (0, T )× Ωε, (2)

where
Ωε = Ω \ ∪N(ε)

i=1 T
i
ε . (3)

The symbol u denotes the fluid velocity, p is the pressure, fε denotes a driving force, and S is the
viscous stress tensor given by Newton’s rheological law

S = ν(∇xu +∇txu), ν > 0. (4)

Problem (1 - 4) is supplemented by the no-slip boundary conditions for the velocity

u|∂Ωε
= 0, (5)

and the initial condition
u(0, ·) = u0,ε. (6)

As it is well-known problem (1 - 6) possesses at least one weak solution provided ∂Ωε is suffi-
ciently regular, fε ∈ L2(0, T ;L2(Ωε;R

3)), and u0,ε ∈ L2(Ωε;R
3)), divxu0,ε = 0, u0,ε · n|∂Ωε

= 0.

2 Conditions on the perforated domains

We consider the so-called critical case, where the diameters of the sets T iε do not exceed the value
ε3, while their mutual distances are larger than ε. More specifically, we assume that

T iε ⊂ Biε ≡ {x | |x− xiε| < riε}, i = 1, . . . , N(ε),

B
i

ε ⊂ Ω for i = 1, . . . , N(ε), B
i

ε ∩B
j

ε = ∅ whenever i 6= j.

Let diε be a distance between balls Biε, B
j
ε , j 6= i, and ∂Ω. Then we suppose the following conditions

for the perforation:
riε < diε, lim

ε→0
max

1≤i≤N(ε)
diε = 0, (7)
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N(ε)∑
i=1

(riε)
2

(diε)
3
≤ C1 where C1 6= C1(i, ε). (8)

This distribution of obstacles is called critical since for “larger” holes or “shorter” mutual
distances the limit velocity would necessarily vanish, while in the opposite case the limit problem
would be the same as (1), (2). Note, however, that suitable scaling of the velocities in the former
case gives rise to a Darcy-type law as the effective equation (see Allaire [2], [4], Mikelič [6]).

In addition to (7), (8), we assume that the obstacles satisfy the following geometrical condition:
Condition (G):
There exists a constant ω > 0 such that at each point x ∈ ∂T iε there exists a closed cone Cx

with vertex at x and of aperture ω such that

Cx ∩ T iε = {x}.

For a compact set Q ⊂ R3, we introduce

Ck,l(Q) =

∫
R3\Q

∇xvk : ∇xvl dx, (9)

where vk is the unique solution of the model problem

−∆xv
k +∇xqk = 0, divxv

k = 0 in B(x0, 1) \Q, (10)

vk|∂Q = ek, vk|∂B(x0,1) = 0, (11)

here ek, k = 1, 2, 3 is the canonical basis of the space R3. Let B(x0, r) be a minimal ball such that
Q ⊂ B(x0, r), r � 1. Moreover, let normalize the pressure by the following equality∫

B(x0,1)

qk dx = 0.

Solution of this problem describes the behavior of the velocity and pressure in the neighbourhood
of small set of perforation.

Under the hypotheses (7), (8), it is possible to show that, at least for a suitable subsequence,

lim
ε→0

∑
T i
ε⊂G

Ck,l(T
i
ε) =

∫
G

Ck,l(x) dx (12)

for any Borel set G ⊂ Ω, where C = {Ck,l}3k,l=1, C ∈ L∞(Ω;R3×3
sym). It can be shown that the

matrix C is constant in the case of periodically distributed obstacles of identical (rescaled) shape,
see Allaire [3].

3 Definition of a weak solution

We say that uε is a weak solution of problem (1 - 6) if

• uε belongs to the class L∞(0, T ;L2(Ωε;R
3)) ∩ L2(0, T ;W 1,2(Ωε;R

3));

• divxuε = 0 a.a. in (0, T )× Ωε;

• the integral identity∫ T

0

∫
Ωε

(
uε · ∂tw + (uε ⊗ uε) : ∇xw

)
dx dt = −

∫
Ωε

u0,ε ·w(0, ·) dx (13)

+

∫ T

0

∫
Ωε

S : ∇xw dx dt−
∫ T

0

∫
Ωε

fε ·w dx dt

holds for any test function w ∈ C∞c ([0, T )× Ωε;R
3), divxw = 0;
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• the energy inequality ∫
Ωε

1

2
|uε|2(τ, ·) dx+ ν

∫ τ

0

∫
Ωε

|∇xuε|2 dx dt

≤
∫

Ωε

1

2
|u0,ε|2 dx+

∫ τ

0

∫
Ωε

fε · uε dx dt

holds for a.a. τ > 0.

Extending u to be zero outside Ωε, for

{u0,ε}ε>0 bounded in L2(Ω;R3), (14)

{fε}ε>0 bounded in L2(0, T ;W−1,2(Ω;R3)), (15)

the associated family of weak solutions {uε}ε>0 of problem (1 - 6) satisfies

uε → u weakly-(*) in L∞(0, T ;L2(Ω;R3)) and weakly in L2(0, T ;W 1,2
0 (Ω;R3)), (16)

at least for a suitable subsequence.
It is easy to check that the limit u satisfies the incompressibility constraint (1) a.a. in (0, T )×Ω,

however, performing the passage in the momentum equation (2) is more delicate. The collective
effect of friction forces imposed on the fluid by each obstacle results, in general, in a new term of
a Brinkman type appearing in the limit problem. The effective momentum equation satisfied by
the limit velocity field u reads

∂tu + divx(u⊗ u) + Cu +∇xp = divxS + f , (17)

where f is a weak limit of the sequence {fε}ε>0.
In order to justify the limit passage from (2) to (17), it is necessary to control the pressure in

the associated stationary Stokes system

−∆v +∇xq = fε in Ωε, v|∂Ωε = 0. (18)

As observed in the seminal work of Tartar [7], this step requires the existence of restriction operator
Rε enjoying the following properties:

• Rε : W 1,2
0 (Ω;R3)→W 1,2

0 (Ωε;R
3) is a bounded linear operator,

‖Rε[v]‖W 1,2
0 (Ωε;R3) ≤ c‖v‖W 1,2

0 (Ω;R3), (19)

with c independent of ε.

•
Rε[v] = v for any v ∈W 1,2

0 (Ωε;R
3). (20)

•
divxRε[v] = 0 whenever divxv = 0. (21)

The construction of the restriction operator Rε based on the recent results of Acosta et al. [1],
Diening et al. [5]. It can be constructed under very mild restrictions imposed on the shape of the

obstacles {T iε}
N(ε)
i=1,ε>0, in particular if all of them are convex.
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4 Main result

Our main result reads as follows.
Theorem Let {Ωε}ε>0 ⊂ R3 be a family of domains given by (3), where T iε , i = 1, . . . , N(ε),

satisfy (7), (8), together with condition (G). Assume that u0,ε → u0 weakly in L2(Ω;R3),

fε → f weakly in L2((0, T )× Ω;R3).


Let {uε}ε>0 be a family of weak solutions of problem (1 - 6).

Then, at least for a suitable subsequence,

uε → u in L2((0, T )× Ω;R3)) and weakly in L2(0, T ;W 1,2(Ω;R3)), (22)

where u is a weak solution of the problem

∂tu + divx(u⊗ u) + Cu +∇xp = divxS + f in (0, T )× Ω, (23)

divxu = 0 a.a. in (0, T )× Ω, (24)

with C given by (12), supplemented with the initial condition

u(0, ·) = u0, (25)

and the boundary condition
u|∂Ω = 0. (26)
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