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Abstract

We consider a ”semi-relativistic” model of radiative viscous compressible Navier-Stokes-Fourier
system coupled to the radiative transfer equation extending the classical model introduced in
[8] and we study diffusion limits in the case of well-prepared initial data and Dirichlet boundary
condition for the velocity field.
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1 Introduction

In recent works [10] [11] singular limits (low Mach number limit and diffusion limits) for a simplified
model of radiation hydrodynamics introduced by Teleaga, Seäıd, Gasser, Klar and Struckmeier in
[23] have been presented. A more realistic model was studied in [8] however this more complete
model suffers from a non manifestly positive production rate of total entropy, preventing ones
from studying these singular limits. Our idea in the present paper is to introduce in the complete
model of [8] a perturbed Planck’s function and a suitable (relativistic) velocity cut off (this is the
meaning we give to ”semi-relativistic” model) allowing to recover this crucial positivity property
for the production rate of total entropy. As the perturbation will be small (going formally to zero
as c→∞), one can expect to obtain the correct limit regimes.

The motion of the fluid is still described by standard non-relativistic fluid mechanics giving
the evolution of the mass density % = %(t, x), the velocity field ~u = ~u(t, x), and the temperature
ϑ = ϑ(t, x) as functions of the time t and the spatial coordinate x ∈ Ω ⊂ R3. The effect of
radiation is still incorporated in the radiative intensity I = I(t, x, ~ω, ν), depending on the direction
~ω ∈ S2, where S2 ⊂ R3 denotes the unit sphere, and the frequency ν ≥ 0, but we take into account
their relativistic corrections. The evolution of I is described by a transport equation with a source
term and the fluid-radiation coupling is expressed through radiative sources in the momentum and
energy equations. More precisely, the system of equations to be studied reads as follows:

∂t%+ divx(%~u) = 0 in (0, T )× Ω, (1)

∂t(%~u) + divx(%~u⊗ ~u) +∇xp(%, ϑ) = divxS− ~SF in (0, T )× Ω, (2)

∂t

(
1

2
%|~u|2 + %e(%, ϑ)

)
+ divx

((
1

2
%|~u|2 + %e(%, ϑ) + p

)
~u+ ~q − S~u

)
= −SE in (0, T )×Ω, (3)

1

c
∂tI + ~ω · ∇xI = S in (0, T )× Ω× (0,∞)× S2. (4)

The symbol p = p(%, ϑ) denotes the thermodynamic pressure and e = e(%, ϑ) is the specific internal
energy, related through Maxwell’s equation

∂e

∂%
=

1

%2

(
p(%, ϑ)− ϑ∂p

∂ϑ

)
. (5)

In (2) S is the viscous stress tensor given by S = µ
(
∇x~u+∇tx~u− 2

3divx~u
)

+ η divx~u I, where the
viscosity coefficients µ = µ(ϑ) > 0 and η = η(ϑ) ≥ 0 are effective functions of the temperature.
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Similarly in (3) ~q is the heat flux given by Fourier’s law ~q = −κ∇xϑ, with the heat conductivity
coefficient κ = κ(ϑ) > 0. We suppose that the radiative source S is given by

S = σa

[
B(ν, ~ω, ~u, ϑ)− I(t, x, ν, ~ω)

]
+σs

(
1

4π

∫
S2

I(t, x, ν, ~ω′) d~ω′ − I(t, x, ν, ~ω)

)
=: Sa,e+Ss. (6)

In the right-hand side the first term is the emission-absorption contribution where σa > 0 is the
absorption coefficient and B is a perturbation of the equilibrium Planck’s function given by

B(ν, ~ω, ~u, ϑ) =
2h

c2
ν3

e
hν
kϑ

(
1−α ~ω·~u

c

)
− 1

, (7)

where h is the Planck’s constant, k is the Boltzmann’s constant and 0 ≤ α(ϑ) ≤ 1 is a smooth

function, to be determined below. One observes that for |~u|c << 1 one recovers the standard

equilibrium Planck’s function B(ν, ϑ) = 2h
c2

ν3

e
hν
kϑ−1

.

Note that the idea of this kind of perturbation is not new and has been extensively used in
recent works on radiative transfer [4],[5],[7],[6], for exemple in the M1 Levermore model [16],[17].

The second term in S is the scattering contribution where σs > 0 is the scattering coefficient
and in the right-hand sides of (2) and (3) appear the coupling sources.

~SF (t, x) =
1

c

∫ ∞
0

∫
S2

~ωS d~ω dν, SE(t, x) =

∫ ∞
0

∫
S2

S d~ω dν. (8)

We first suppose that the transport coefficients are smooth functions satisfying σa(ϑ, ~u) = χ(|~u|)σ̃a(ϑ) ≥
0 and σs(ϑ) ≥ 0 and that both depend neither on angular variable (1 - 4) (isotropy of radiation),
nor on frequency (the so called ”grey” hypothesis).

The function χ appearing in the emission-absorption coefficient is a C∞ cut-off satisfying

χ(s) =

{
1 if s ≤ c,
0 if s ≥ c+ β,

for an arbitrary β > 0. The role of this cut-off is to deal with the singularity of B and its meaning is
the following: in the “over-relativistic” regime (|~u| ≥ c) where special relativity would be violated,
we decide to decouple matter and radiation. Of course this is an arbitrary choice but only a
meaningless region with respect to physics is concerned (recall that in the relativistic setting [5],

Lorentz factors of the type
(

1 − ~u2

c2

)1/2

become singular for |~u| = c). Finally system (1 - 4) is

supplemented with the boundary conditions:

~u|∂Ω = 0, ~q · ~n|∂Ω = 0, (9)

I(t, x, ν, ~ω)|Γ− = 0,

Γ− ≡ {{x, ω} ∈ ∂Ω× S2, ~ω · ~n ≤ 0},
(10)

where ~n denotes the outer normal vector to ∂Ω, and initial conditions

(%(t, x), ~u(t, x), ϑ(t, x), I(t, x, ω, ν))|t=0 =
(
%0(x), ~u0(x), ϑ0(x), I0(x, ~ω, ν)

)
, (11)

for any x ∈ Ω, ~ω ∈ S2,ν ∈ R+.

The relativistic version of system (1 - 10) has been introduced by Pomraning [21] and Mihalas
and Weibel-Mihalas [20] and investigated more recently in astrophysics and laser applications (in
the inviscid case) by Lowrie, Morel and Hittinger [18] and Buet and Desprès [5], with a special
attention to asymptotic regimes, and this last paper was a deep source of inspiration for the present
work. Let us mention that a simplified version of the system (non relativistic non conducting fluid
at rest) has been investigated by Golse and Perthame in [15] where global existence was proved
under very mild hypotheses (transport coefficients may be singular). A global existence result was
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also proved in [8] for the simplified model (without relativistic corrections), under some cut-off
hypotheses on transport coefficients.

Hypotheses:
We consider the pressure in the form

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+
a

3
ϑ4, a > 0, (12)

where P : [0,∞)→ [0,∞) is a given function with the following properties:

P ∈ C1[0,∞), P (0) = 0, P ′(Z) > 0, for all Z ≥ 0, (13)

0 <
5
3P (Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (14)

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (15)

After Maxwell’s equation (5), the specific internal energy e is

e(%, ϑ) =
3

2

(
ϑ5/2

%

)
P
( %

ϑ3/2

)
+ a

ϑ4

%
, (16)

and the associated specific entropy reads

s(%, ϑ) = M
( %

ϑ3/2

)
+

4a

3

ϑ3

%
with M ′(Z) = −3

2

5
3P (Z)− P ′(Z)Z

Z2
< 0. (17)

The transport coefficients µ, η, and κ are continuously differentiable functions of the absolute
temperature such that

0 < c1(1 + ϑ) ≤ µ(ϑ), µ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c(1 + ϑ), (18)

0 < c1(1 + ϑ3) ≤ κ(ϑ) ≤ c2(1 + ϑ3) (19)

for any ϑ ≥ 0. Moreover we assume that σa and σs are smooth functions such that

0 ≤ σa(ϑ, ~u), σs(ϑ) ≤ c1, σa(ϑ, ~u)B(ν, ~ω, ~u, ϑ) ≤ c2, (20)

σa(ϑ, ~u)B(ν, ~ω, ~u, ϑ) ≤ h(ν), h ∈ L1(0,∞), (21)

where c1,2,3 are positive constants. Relations (20 - 21) represent “cut-off” hypotheses neglecting
the effect of radiation at large temperature and ultra relativistic velocities (see [22] for physical
motivations).

2 Diffusion limits

Diffusion limits consist in supposing that one of the transport coefficient is small while the other is
large. These regimes have been introduced by Lowrie, Morel et Hittinger [18] and also considered
by Buet and Desprès [5].

In order to identify the appropriate limit regimes we perform two different scalings.

• The first one corresponds to the equilibrium diffusion regime defined in [5] by

Ma = Sr = Pe = Re = P = 1, C = ε−1, Ls = ε2 and L = ε−1,

leading to the primitive system

ε ∂tI + ~ω · ∇xI =
1

ε
σa (B − I) + εσs

(
1

4π

∫
S2

I d~ω − I
)
, (22)

∂t%+ divx(%~u) = 0, (23)
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∂t

(
%~u+ ε ~FR

)
+ divx

(
%~u⊗ ~u+ PR

)
+∇xp− divxS = 0. (24)

∂t

(
1

2
%|~u|2 + %e+ ER

)
+ divx

((
1

2
%|~u|2 + %e+ p

)
~u+

~FR

ε
+ ~q − S~u

)
= 0, (25)

∂t (%s+ εsR) + divx (%~us+ ~qR) + divx

(
~q

ϑ

)
≥ 1

ϑ

(
S : ∇x~u−

~q · ∇xϑ
ϑ

)
,

+
1

ε

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]
σa(I −B) d~ωdν

+ε

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]
σs(I − Ĩ) d~ωdν (26)

with
d

dt

∫
Ω

(%E + ER) dx+
1

ε

∫ ∞
0

∫
Γ+

~ω · ~n I dΓ+dν = 0, (27)

where E = 1
2 |~u|

2 + e, the entropy of a photon gas is defined as

sR = −2k

c3

∫ ∞
0

∫
S2

ν2 [n log n− (n+ 1) log(n+ 1)] d~ωdν,

n = n(I) = c2I
2hα3ν3 is the occupation number, the radiative entropy flux is defined as

~qR = −2k

c2

∫ ∞
0

∫
S2

ν2 [n log n− (n+ 1) log(n+ 1)] ~ω d~ωdν,

log n(B)
n(B)+1 = −hνkϑ

(
1−α ~ω·~uc

)
, where B is the Planck’s function. The radiative energy ER is defined

as

ER(t, x) =
1

c

∫
S2

∫ ∞
0

I(t, x, ~ω, ν) d~ω dν, (28)

and the radiative momentum

~FR(t, x) =

∫
S2

∫ ∞
0

~ωI(t, x, ~ω, ν) d~ω dν. (29)

• The second one is the “ non-equilibrium diffusion regime” also defined in [5] by

Ma = Sr = Pe = Re = P = 1, C = ε−1, L = ε2 and Ls = ε−1.

One checks that equations (23) (24) (25) and (27) still hold in this scaling. The new transport
equation is

ε ∂tI + ~ω · ∇xI = εσa (B − I) +
1

ε
σs

(
1

4π

∫
S2

I d~ω − I
)
, (30)

and the new entropy inequality is

∂t (%s+ εsR) + divx (%~us+ ~qR) + divx

(
~q

ϑ

)
≥ 1

ϑ

(
S : ∇x~u−

~q · ∇xϑ
ϑ

)

+ε

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]
σa(I −B) d~ωdν

+
1

ε

∫ ∞
0

∫
S2

1

ν

[
log

n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]
σs(I − Ĩ) d~ωdν. (31)

Target system in the equilibrium-diffusion regime

∂t%+ divx(%~u) = 0, (32)
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∂t(%~u) + divx(%~u⊗ ~u) +∇xp = divxS, (33)

∂t

(
1

2
%|~u0|2 + %e

)
+ divx

((
1

2
%|~u|2 + %e + p

)
~u+ ~q− S~u

)
= 0, (34)

∂t (%s) + divx (%s~u) + divx

(
~q

ϑ

)
=

1

ϑ

(
S : ∇x~u−

~q · ∇xϑ
ϑ

)
, (35)

I = B(ν, ϑ), (36)

where p(%, ϑ) = p(%, ϑ) + a
3ϑ

4, e(%, ϑ) = e(%, ϑ) + a
%ϑ

4, k(ϑ0) = κ(ϑ) + 4a
3σa

ϑ3, ~q = −k(ϑ)∇xϑ and

%s = %s+ 4
3aϑ

3.
We also get boundary conditions

~u|∂Ω = 0, ∇ϑ · ~n|∂Ω = 0, (37)

and initial conditions

(%(x, t), ~u(x, t), ϑ(x, t))|t=0 =
(
%0(x), ~u0(x), ϑ0(x)

)
, (38)

for any x ∈ Ω with the following compatibility conditions

~u0(x)|∂Ω = 0, ∇ϑ0 · ~n|∂Ω = 0. (39)

As expected, this system corresponds to a viscous compressible heat-conductive fluid at lo-
cal thermodynamical equilibrium with radiation, equilibrium being achieved between matter and
radiation with radiative intensity I = B(ν, ϑ), corresponding to the black-body radiation at tem-
perature ϑ with radiative energy ER(ϑ) = aϑ4.

From the classical results of Matsumura and Nishida [19] it can be derived the existence results
see [12].

We adapt from [13] the necessary definitions to the formalism of essential and residual sets.
Given three numbers % ∈ R+, ϑ ∈ R+ and E ∈ R+ we define OHess the set of hydrodynamical
essential values

OHess :=

{
(%, ϑ) ∈ R2 :

%

2
< % < 2%,

ϑ

2
< ϑ < 2ϑ

}
, (40)

and ORess the set of radiative essential values

ORess :=

{
ER ∈ R :

E

2
< ER < 2E

}
, (41)

with Oess := OHess ∪ ORess, and their residual counterparts

OHres := (R+)2\OHess, ORres := R+\ORess, Ores := (R+)3\Oess. (42)

Theorem 2.1 Let Ω ⊂ R3 be a bounded domain of class C2,ν . Assume that the thermodynamic
functions p, e, s satisfy hypotheses (12 - 17) with P ∈ C1[0,∞)∩C2(0,∞), and that the transport
coefficients µ, η, κ, σa, σs and the equilibrium function B comply with (18) - (21).

Let (%ε, ~uε, ϑε, Iε) be a weak solution to the scaled radiative Navier-Stokes system (22 - 27) for
(t, x, ~ω, ν) ∈ [0, T ] × Ω × S2 × R+, supplemented with boundary conditions (9 - 10) and initial
conditions (%0,ε, ~u0,ε, ϑ0,ε, I0,ε) such that

%ε(0, ·) = %0 +
√
ε%

(1)
0,ε, ~uε(0, ·) = ~u0,ε, ϑε(0, ·) = ϑ0 +

√
εϑ

(1)
0,ε,

where (%0, ~u, ϑ0) ∈ H3(Ω) are smooth functions such that (%0, ϑ0) belong to the set OHess where

% > 0, ϑ > 0, are two constants and
∫

Ω
%

(1)
0,ε dx = 0,

∫
Ω
ϑ

(1)
0,ε dx = 0. Suppose also that

~u0,ε → ~u0 strongly in L∞(Ω;R3), %
(1)
0,ε → %

(1)
0 strongly in L2(Ω),

ϑ
(1)
0,ε → ϑ

(1)
0 strongly in L2(Ω).
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Then up to subsequences

%ε → % strongly in L∞(0, T ;L
5
3 (Ω)), ~uε → ~u strongly in L2(0, T ;W 1,2(Ω;R3)),

ϑε → ϑ strongly in L∞(0, T ;L4(Ω)), Iε → B(ν, θ) strongly in L∞((0, T )× Ω× S2)× (0,∞)),

where (%, ~u, ϑ) is the smooth solution of the equilibrium decoupled system (32)-(34) on [0, T ] × Ω,
with initial data (%0, ~u0, ϑ0).

The target system in the non-equilibrium diffusion regime
We obtain a compressible Navier-Stokes-Fourier system with sources coupled to a diffusion

equation for N .

∂t%+ divx(%~u) = 0, (43)

∂t(%~u) + divx(%~u⊗ ~u) +∇xp = divxS, (44)

∂t

(
1

2
%|~u0|2 + %e

)
+ divx

((
1

2
%|~u|2 + %e + p

)
~u+ ~q− S~u

)
= 0, (45)

∂t (%s) + divx (%s~u) + divx

(
~q

ϑ

)
=

1

ϑ

(
S : ∇x~u−

~q · ∇xϑ
ϑ

)
+

1

3

∇xN · ~u
ϑ

− σa(ϑ)

ϑ

(
aϑ4 −N

)
, (46)

∂tN −
1

3
divx

(
1

σs(ϑ)
∇xN

)
= σa(ϑ)

(
aϑ4 −N

)
, (47)

where p = p+ 1
3N , e = e+ N

% and ~q = κ∇xϑ+ 1
3σs
∇xN with boundary conditions

~u|∂Ω = 0, ∇ϑ · ~n|∂Ω = 0, N |∂Ω = 0, (48)

initial conditions

(%(x, t), ~u(x, t), ϑ(x, t), N(x, t))|t=0 =
(
%0(x), ~u0(x), ϑ0(x), N0(x)

)
, (49)

for any x ∈ Ω, with N0(x) =
∫∞

0

∫
S2 I

0(x, ν, ~ω) d~ω dν and the compatibility conditions

~u2|∂Ω = 0, ∇ϑ0 · ~n|∂Ω = 0, N0
∣∣
∂Ω

= 0. (50)

It will be useful as in [5] to define the non-equilibrium temperature θr by

N = aθ4
r . (51)

In analogy with previous works on asymptotic analysis of radiative transfer equation (see [2], [3])
we call (43)-(49) the Navier-Stokes-Rosseland system. As in the equilibrium case, we have a global
existence result for solutions of this problem for small data for more details see [12].

Theorem 2.2 Let Ω ⊂ R3 be a bounded domain of class C2,ν . Assume that the thermodynamic
functions p, e, s satisfy hypotheses (12 - 17) with P ∈ C1[0,∞)∩C2(0,∞), and that the transport
coefficients µ, λ, κ, σa, σs and the equilibrium function B comply with (18) - (21).

Let (%ε, ~uε, ϑε, Iε) be a weak solution to the system (23) (24) (25), (27), (30), (31) for (t, x, ~ω, ν) ∈
[0, T ]×Ω×S2×R+, supplemented with the boundary conditions (9 - 10) and the initial conditions
(%0,ε, ~u0,ε, ϑ0,ε, I0,ε) such that

%ε(0, ·) = %0 +
√
ε%

(1)
0,ε, ~uε(0, ·) = ~u0,ε, ϑε(0, ·) = ϑ0 +

√
εϑ

(1)
0,ε, Iε(0, ·) = I0 +

√
εI

(1)
0,ε ,

where the functions (%0, ~u, ϑ0) and x→ I0(x, ~ω, ν) belong to H3(Ω) and are such that (%0, ϑ0, ER(I0))
belong to the set Oess. Suppose also that

~u0,ε → ~u0 strongly in L∞(Ω;R3), %
(1)
0,ε → %

(1)
0 strongly in L2(Ω),

ϑ
(1)
0,ε → ϑ

(1)
0 strongly in L2(Ω), I

(1)
0,ε → I

(1)
0 strongly in L∞((0, T )× Ω× (0,∞)).
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Then up to subsequences

%ε → % strongly in L∞(0, T ;L
5
3 (Ω)), ~uε → ~u strongly in L2(0, T ;W 1,2(Ω;R3)),

ϑε → ϑ strongly in L∞(0, T ;L4(Ω)), Nε → N strongly in L∞((0, T )× Ω),

where Nε =
∫∞

0

∫
S2 Iε d~ω dν and (%, ~u, ϑ,N) is the smooth solution of the Navier-Stokes-Rosseland

system (43)-(47) on [0, T ]× Ω with initial data (%0, ~u0, ϑ0, N0).

Proofs of Theorems 2.1, 2.2 are based on the theory of singular limits [13] and the relative entropy
inequality [14]. We just give the sketch of the proof. We introduce a relative entropy inequality
satisfied by any weak solution (%, ~u, ϑ, I) of the radiative Navier-Stokes -Fourier system.

Let us consider a set {r,Θ, ~U} of arbitrary smooth functions such that r and Θ are bounded

below away from zero and ~U
∣∣∣
∂Ω

= 0. We call ballistic free energy the thermodynamical potential

given by HΘ(%, ϑ) = %e(%, ϑ)−Θ%s(%, ϑ), and radiative ballistic free energy the potential HR
Θ (I) =

ER(I)−ΘsR(I). The relative entropy is then defined by

E(%, ϑ|r,Θ) := HΘ(%, ϑ)− ∂ρHΘ(r,Θ)(%− r)−HΘ(r,Θ).

Then the relative entropy inequality of the radiative Navier-Stokes-Fourier system is the following∫
Ω

(
1

2
%ε|~uε − ~U |2 + E (%ε, ϑε|r,Θ) + εHR(Iε)

)
(τ, ·) dx+

∫ τ

0

∫
Γ+

~ω · ~nxIε(t, x, ~ω, ν) dΓ dν dt

+

∫ τ

0

∫
Ω

Θ

ϑε

(
Sε : ∇x~uε −

~qε · ∇xϑε
ϑε

)
dx dt

+

∫ τ

0

∫
Ω

∫ ∞
0

∫
S2

Θ

ν

[
log

n(Iε)

n(Iε) + 1
− log

n(Bε)

n(Bε) + 1

]
σa

(j)
ε (Bε − Iε) d~ω dν dx dt

+

∫ τ

0

∫
Ω

∫ ∞
0

∫
S2

Θ

ν

[
log

n(Iε)

n(Iε) + 1
− log

n(Ĩε)

n(Ĩε) + 1

]
σs

(j)
ε (Ĩε − Iε) d~ω dν dx dt,

≤
∫

Ω

1

2

(
%0,ε|~u0,ε − ~U(0, ·)|2 + E (%0,ε, ϑ0,ε|r(0, ·),Θ(0, ·)) + εHR(I0,ε)

)
dx

+

∫ τ

0

∫
Ω

%ε(~uε − ~U) · ∇x~U ·
(
~U − ~uε

)
dx dt+

∫ τ

0

∫
Ω

%ε (sε − s(r,Θ))
(
~U − ~uε

)
· ∇xΘ dx dt

+

∫ τ

0

∫
Ω

(
%ε

(
∂t~U + ~U · ∇x~U

)
·
(
~U − ~uε

))
dx dt

−
∫ τ

0

∫
Ω

(
pε divx~U − Sε : ∇x~U

)
dx dt−

∫ τ

0

∫
Ω

(
εsRε ∂tΘ + ~qRε · ∇xΘ

)
dx dt

−
∫ τ

0

∫
Ω

(
%ε (sε − s(r,Θ)) ∂tΘ

)
dx dt−

∫ τ

0

∫
Ω

%ε (sε − s(r,Θ)) ~U · ∇xΘ dx dt

−
∫ τ

0

∫
Ω

~qε
ϑε
· ∇xΘ dx dt+

∫ τ

0

∫
Ω

((
1− %ε

r

)
∂tp(r,Θ)− %ε

r
~uε∇xp(r,Θ)

)
dx dt

−
∫ τ

0

∫
Ω

(
ε ~FRε · ∂t~U + PRε : ∇x~U

)
dx dt. (52)

For more details see [12].
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[8] B. Ducomet, E. Feireisl, Š. Nečasová. On a model of radiation hydrodynamics. Ann. I. H.
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