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Abstract

We consider a ”semi-relativistic” model of radiative viscous compressible Navier-Stokes-Fourier
system coupled to the radiative transfer equation extending the classical model introduced in
[8] and we study diffusion limits in the case of well-prepared initial data and Dirichlet boundary
condition for the velocity field.
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1 Introduction

In recent works [10] [11] singular limits (low Mach number limit and diffusion limits) for a simplified
model of radiation hydrodynamics introduced by Teleaga, Seaid, Gasser, Klar and Struckmeier in
[23] have been presented. A more realistic model was studied in [8] however this more complete
model suffers from a non manifestly positive production rate of total entropy, preventing ones
from studying these singular limits. Our idea in the present paper is to introduce in the complete
model of [8] a perturbed Planck’s function and a suitable (relativistic) velocity cut off (this is the
meaning we give to ”semi-relativistic” model) allowing to recover this crucial positivity property
for the production rate of total entropy. As the perturbation will be small (going formally to zero
as ¢ — 00), one can expect to obtain the correct limit regimes.

The motion of the fluid is still described by standard non-relativistic fluid mechanics giving
the evolution of the mass density o = o(t, ), the velocity field @ = w(t, ), and the temperature
¥ = O(t,z) as functions of the time ¢ and the spatial coordinate 2 € © C R®. The effect of
radiation is still incorporated in the radiative intensity I = I(¢,x,d, v), depending on the direction
@ € 82, where 82 C R? denotes the unit sphere, and the frequency v > 0, but we take into account
their relativistic corrections. The evolution of I is described by a transport equation with a source
term and the fluid-radiation coupling is expressed through radiative sources in the momentum and
energy equations. More precisely, the system of equations to be studied reads as follows:

0o+ divy (o) =0 in (0,7) x Q, (1)
9y (0@) + div, (0 ® @) + Vap(0,9) = divyS — Sp in (0,7) x €, (2)

1 1
O (zglﬁ2 + oe(o, 19)) + div, ((QQIEI2 + oe(o, ) +p> 0+q— Sﬁ) =-Sg in(0,T)xQ, (3)

1
EBtI+LU-VII:S in (0,7) x Q x (0,00) x S2. (4)

The symbol p = p(p, ) denotes the thermodynamic pressure and e = e(p, ¥) is the specific internal
energy, related through Maxwell’s equation

S = (sen-035). )

In (2) S is the viscous stress tensor given by S = p (V@ + Vi — %divmﬁ) +n div,@ I, where the
viscosity coefficients g = () > 0 and n = n(¥) > 0 are effective functions of the temperature.
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Similarly in (3) ¢ is the heat flux given by Fourier’s law § = —xV ¢, with the heat conductivity
coefficient k = k(¥) > 0. We suppose that the radiative source S is given by

S =0, [B(u,w,ﬁ, 9) — I(t,,v, w)} to, (41/ It 2,0,0) did — I(t, 2, v, w)) = Sae+Ss. (6)
T JS2

In the right-hand side the first term is the emission-absorption contribution where o, > 0 is the
absorption coefficient and B is a perturbation of the equilibrium Planck’s function given by

2h V3
2 )
c M(l_aﬁ-ﬁ)
ekﬂ c _ 1

where h is the Planck’s constant, k is the Boltzmann’s constant and 0 < a(¢) < 1 is a smooth

B(V7 o‘_)” 127 19) =

(7)

function, to be determined below. One observes that for \%I << 1 one recovers the standard

2h _J°
2 hv
€ ek —

equilibrium Planck’s function B(v, ) =

Note that the idea of this kind of perturbation is not new and has been extensively used in
recent works on radiative transfer [4],[5],[7],[6], for exemple in the M1 Levermore model [16],[17].

The second term in S is the scattering contribution where o5 > 0 is the scattering coefficient
and in the right-hand sides of (2) and (3) appear the coupling sources.

gp(t,x):%/o /8255 da dv, SE(t,x):/O SZde dv. (8)

We first suppose that the transport coefficients are smooth functions satisfying o, (9, @) = x(|@])54(¢) >
0 and o5(¢) > 0 and that both depend neither on angular variable (1 - 4) (isotropy of radiation),
nor on frequency (the so called "grey” hypothesis).

The function y appearing in the emission-absorption coefficient is a C*° cut-off satisfying

(s) = 1 if s<eg,

XEI=91 0 if s >c+f,

for an arbitrary S > 0. The role of this cut-off is to deal with the singularity of B and its meaning is
the following: in the “over-relativistic” regime (|@| > ¢) where special relativity would be violated,
we decide to decouple matter and radiation. Of course this is an arbitrary choice but only a

meaningless region with respect to physics is concerned (recall that in the relativistic setting [5],

o\ 1/2
Lorentz factors of the type (1 — ?—j) become singular for |@| = ¢). Finally system (1 - 4) is

supplemented with the boundary conditions:

tilog =0, ¢ 7ilan = 0, 9)
I(t,z,v,d)|r_ =0,
(10)
I ={{z,w} €00 x S?,& -7 <0},
where 7 denotes the outer normal vector to 02, and initial conditions
(olt, ), alt,x), O(t,x), I(t,z,w,v))|,— = (¢*(x), @(z), ¥°(x), I°(x,d,v)), (11)

for any x € Q, G € S2,v € R,.

The relativistic version of system (1 - 10) has been introduced by Pomraning [21] and Mihalas
and Weibel-Mihalas [20] and investigated more recently in astrophysics and laser applications (in
the inviscid case) by Lowrie, Morel and Hittinger [18] and Buet and Despres [5], with a special
attention to asymptotic regimes, and this last paper was a deep source of inspiration for the present
work. Let us mention that a simplified version of the system (non relativistic non conducting fluid
at rest) has been investigated by Golse and Perthame in [15] where global existence was proved
under very mild hypotheses (transport coefficients may be singular). A global existence result was
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also proved in [8] for the simplified model (without relativistic corrections), under some cut-off
hypotheses on transport coefficients.

Hypotheses:
We consider the pressure in the form

0 a
p(0,9) = 95/2P <W) + 50 a>0, (12)

where P : [0,00) — [0,00) is a given function with the following properties:

P e C'0,00), P(0)=0, P'(Z) >0, for all Z >0, (13)
Sp(72)-P(2)Z
0< 3 ()Z (2) <cforall Z >0, (14)
. P2
After Maxwell’s equation (5), the specific internal energy e is
3 195/2 0 94
e(o,9) = 5 (Q) Vi (W) + a?, (16)
and the associated specific entropy reads
_ 0 4a9® s 332P(Z)-P(2)Z

The transport coefficients p, 1, and x are continuously differentiable functions of the absolute
temperature such that

0<ca(l+9) <u), /@) <ca, 0<n) <c(l+9), (18)
0<cr(1+93) < k(W) < ca(l+9°) (19)
for any ¥ > 0. Moreover we assume that o, and o, are smooth functions such that
0 <0,(9,%), 0s(V) < c1, 0,(0,8)B(v,d,d,d) < ca, (20)
oa(9,@)B(v,&,i,9) < h(v), h € L'(0,00), (21)

where ¢ 2 3 are positive constants. Relations (20 - 21) represent “cut-off” hypotheses neglecting
the effect of radiation at large temperature and ultra relativistic velocities (see [22] for physical
motivations).

2 Diffusion limits

Diffusion limits consist in supposing that one of the transport coefficient is small while the other is
large. These regimes have been introduced by Lowrie, Morel et Hittinger [18] and also considered
by Buet and Despres [5].

In order to identify the appropriate limit regimes we perform two different scalings.

e The first one corresponds to the equilibrium diffusion regime defined in [5] by
Ma=Sr=Pe=Re=P=1,C=¢1', L;=e?>and L. =¢"1,
leading to the primitive system
- 1 1 -
63t1+w~VzIJQ(BI)+€JS</ Idw[), (22)
€ am Js2

Oro + div, (o) = 0, (23)
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Oy (gﬁ+ sﬁR) + div, (gd@ i+ IPR) + Vup — div,S = 0. (24)
|- R : Lo _ PR
Oy §g|u| + oe + E7 | +div, §Q|u\ +oe+p u—|—7—|—q—Su =0, (25)

0

% /OOO /S % [bgn(?]l_glll —1ogn(”B<)l?1] 0u(I — B) dddv
)

O¢ (08 + esg) + div,, (otis + qr) + div, (q) 3 (S Vi — Zﬂ?) ,

o 1 n([l) n(I
— |log ———— —log —=——| 0,(I — 1) did 26
+€/0 /52V Ogn(l)—l—l ogn(1)+1 o ) dddv (26)
with
[ (08 + ) o+ / / AT ddy =0, 27)
dt r,

where £ = % || + e, the entropy of a photon gas is defined as
2k [
st = - / / v?[nlogn — (n 4 1)log(n + 1)] d&dy,
C 0 S2

n=n(l)= Iy3 is the occupation number, the radiative entropy flux is defined as

2has
R 2k [ 2 oo
¢ =-— venlogn — (n+ 1)log(n + 1)] & dddv,
S2
log n?é?ll = - (1 ¥l ) where B is the Planck’s function. The radiative energy E¥ is defined
as
1 oo
= f/ / I(t,z,d,v) dd dv, (28)
€JszJo
and the radiative momentum
FB(t,z) = / / &It z,@,v) da dv. (29)
52

e The second one is the “ non-equilibrium diffusion regime” also defined in [5] by
Ma=Sr=Pe=Re=P=1,C=c', L=c?and L, =¢ L.

One checks that equations (23) (24) (25) and (27) still hold in this scaling. The new transport
equation is

1 1
e O +G Vol =coy (B—1I)+ Lo, </ Icw—f), (30)
9 4 S2
and the new entropy inequality is
7 1 7 V0
8t(gs+553)+divw(gﬁs+q'}g)+divm(g 219<§-Vmﬁ_qg >
e 1 n(I) n(B)
— |log ——~—+— —log ————| 0,(I — B) dad
+5/0 /‘ng{Ogn(I)—Fl Ogn(B)+1 7ol ) diddy
1 [ 1 n(I) n(I) =
+= = |log ——=—— —log —=———| 0,(I — I) dddv. 31
- /s[ Ba 1 Bam | U Y B

Target system in the equilibrium-diffusion regime

Oro + divg (o) =0, (32)
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O (0t) + div, (ot ® @) + V,p = div,S, (33)
1 1
o (2 oldo|* + Qe) + div, (<2 oli|* + oe + p) T+q— Sﬁ) =0, (34)
q 1 q-V..
Ot (08) + div, (0st) + div, ) -~ (s Vil — 4 VoV , (35)
) 9 )
I = B(v,9), (36)

where p(o,7) = p(o,9) + §9*, e(0,0) = e(0,9) + 29%, k(o) = K(V) + 520%, d = ~k(9) V.0 and
0s = 0S + %aﬂg.
We also get boundary conditions

toq =0, VI - fl]oq =0, (37)
and initial conditions
(o(@.t), d(w,t), I(x,1))], = ("(2), @(x), ¥°(x)), (38)
for any x € € with the following compatibility conditions
i@"(z)|oq = 0, VI° - ii|oq = 0. (39)

As expected, this system corresponds to a viscous compressible heat-conductive fluid at lo-
cal thermodynamical equilibrium with radiation, equilibrium being achieved between matter and
radiation with radiative intensity I = B(v,), corresponding to the black-body radiation at tem-
perature ¥ with radiative energy Er(9) = a¥?.

From the classical results of Matsumura and Nishida [19] it can be derived the existence results
see [12].

We adapt from [13] the necessary definitions to the formalism of essential and residual sets.
Given three numbers o € R, ¥ € R, and E € R, we define OX_ the set of hydrodynamical
essential values

Ogs:{(g,ﬁ)eRQ : §<g<29,2<19<219}, (40)
and OF _ the set of radiative essential values
OF = {ERER : §<ER<2E}, (41)
with Ogss = Ogs U OZS, and their residual counterparts
Ofes = R4)"\Ohs, Ofty :=RiNOL,, Opes i = (Ry)*\Opss. (42)

Theorem 2.1 Let Q C R? be a bounded domain of class C%¥. Assume that the thermodynamic
functions p, e, s satisfy hypotheses (12 - 17) with P € C1[0,00) N C2(0,00), and that the transport
coefficients w, n, K, 04, 05 and the equilibrium function B comply with (18) - (21).

Let (0, e, Ve, I.) be a weak solution to the scaled radiative Navier-Stokes system (22 - 27) for
(t,z,d,v) € [0,T] x Q x 82 x Ry, supplemented with boundary conditions (9 - 10) and initial
conditions (0o.¢,Uo e, Vo,e, Lo,e) such that

QE(Oa ) = 00 + ﬁ@é}ga ﬁ&(ov ) = ’JO,Ea 198(07 ) = 190 + \/&9(()27

where (o, @,99) € H3(Q) are smooth functions such that (09,90) belong to the set OL_ where

0>0, ¥ >0, are two constants and fQ g((fg dxr =0, fQ 19(()2 dx = 0. Suppose also that
- N . 00 l0y. ™3 (1) (1) . 2
tp,e — o strongly in L= (45 R”), 052 — 0y strongly in L=(€2),

19512 — 1981) strongly in L*(Q).

)
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Then up to subsequences
0e — 0 strongly in L>(0,T; L%(Q))7 . — @ strongly in L*(0,T; Wh2(Q;R?)),

9. — 9 strongly in L>(0,T; L*(Q)), I. — B(v,0) strongly in L>((0,T) x Q x §%) x (0,00)),
where (o, i, ) is the smooth solution of the equilibrium decoupled system (32)-(34) on [0,T] x Q,
with initial data (0o, Up, Fo).-

The target system in the non-equilibrium diffusion regime
We obtain a compressible Navier-Stokes-Fourier system with sources coupled to a diffusion
equation for N.

0o + div, (o) = 0, (43)
Ot (o) + div, (0t ® @) + V,p = div,S, (44)
1 1
O (2 oldo|* + ge) + div, ((2 oli|* + oe + p> i+q- Sa’) =0, (45)

O¢ (08) +div, (0st) +div, (q) _ (S Vet — (a9' = N), (46)

G Ved\ [ 1V.N @ oa(9)
9) "0

9 3 0
N — % div, (@vm) = 04(¥) (a0* = N), (47)

where p=p+ 1N e=e+ N and § = KV, + 3 V N with boundary conditions

Ulpo =0, VO -iilpg =0, N|yq =0, (48)
initial conditions
(o(x, 1), t(x,t), O(z,t),N(z,t)],_ = (°(2), @(x), ¥°(x),N°(x)), (49)
for any z € Q, with N(z) = [, [, I°(z,v,&) did dv and the compatibility conditions
@*[oq = 0, VI° - iilgg =0, N°|,, =0. (50)

It will be useful as in [5] to define the non-equilibrium temperature 6, by
N = aft. (51)

In analogy with previous works on asymptotic analysis of radiative transfer equation (see [2], [3])
we call (43)-(49) the Navier-Stokes-Rosseland system. As in the equilibrium case, we have a global
existence result for solutions of this problem for small data for more details see [12].

Theorem 2.2 Let Q C R® be a bounded domain of class C*. Assume that the thermodynamic
functions p, e, s satisfy hypotheses (12 - 17) with P € C[0,00) N C?(0,00), and that the transport
coefficients u, A\, k, 04, 05 and the equilibrium function B comply with (18) - (21).

Let (9e, Ue, Ve, I.) be a weak solution to the system (23) (24) (25), (27), (30), (31) for (t,x,d,v) €
[0, 7] x Q x 82 x Ry, supplemented with the boundary conditions (9 - 10) and the initial conditions
(00,6, Uo,e, V0,6, l0,c) such that

QE(07 ) = 00 + \/59827 ﬁ€(07 ) = ﬁO,E, 196(07 ) = 190 + \@19(()12’ I6(07 ) = IO + \@IO(}E)a

where the functions (o, i, 90) and x — Iy(z,d, v) belong to H3(Q) and are such that (09,90, Er(Io))
belong to the set Ocss. Suppose also that

(1)

lig,e — il strongly in L™(R?), g5 — Qé ) strongly in L*(Q),

1982 — 1951) strongly in L*(Q), I(l) — Ié ) strongly in L>((0,T) x Q x (0,00)).
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Then up to subsequences
0 — 0 strongly in LOO(O,T;L%(Q)), . — @ strongly in L*(0,T; W52 (Q; R?)),

9. — 9 strongly in L°°(0,T; L*(Q)), N. = N strongly in L>=((0,T) x Q),

where N, = fooo f52 I. d& dv and (o, @, 9, N) is the smooth solution of the Navier-Stokes-Rosseland
system (43)-(47) on [0,T] x Q with initial data (o, o, o, No).

Proofs of Theorems 2.1, 2.2 are based on the theory of singular limits [13] and the relative entropy
inequality [14]. We just give the sketch of the proof. We introduce a relative entropy inequality
satisfied by any weak solution (g, @, 1, I) of the radiative Navier-Stokes -Fourier system.

Let us consider a set {r, 9, U } of arbitrary smooth functions such that r and © are bounded

below away from zero and ﬁ‘aﬂ = 0. We call ballistic free energy the thermodynamical potential

given by He(p,9) = oe(p,9) — Oos(0,V), and radiative ballistic free energy the potential HE(I) =
EE(I) — ©sf(I). The relative entropy is then defined by

E(p,V|r,©) := Heg(p,9) — 0,He(r,0)(0 — 1) — Ho(r, ©).

Then the relative entropy inequality of the radiative Navier-Stokes-Fourier system is the following

1 - T
/ (2 0|t — U|2 + & (0e,9c|r, ©) +5HR(IE)> (1,°) da:Jr/ / @ gl (t, z,0,v) dU dv dt
Q o Jry

Tl e AR
+/ /(ngvzag—> de di
0 52195 198
T o @{ n(I.) n(B.) } , .

+ = |log — log 0,9 (B: — I.) d& dv dx dt
L L L oty — oz by ) o (B = )
L LT et ey

s2 vV 5 —l—l ( )
§/2<Q06|u0€_ ( )|2+5(90€77905
Q
+/ /gg(a; ) - VU( _a. dacdt+/ /gg 5e ))(ﬁ—ﬁe)-vx@dxdt
0 Q
+/ /(gs (00 +0-v.0) - (0 -.)) dar ar
// padlngU S VU dx dt — //EsRat@—i— V@) dx dt

/ / 0 (8¢ — s(r,©)) 0;© dxdtf/ /QE Se O) U - V,0O dx dt
q- Qe -
_/ / -V @dxdt—i—/ / 1—— atp(r 0) - — 4.V xp(n@)) dx dt
0 Q’ﬂ r

—/ /(eﬁf-aﬁwpfzvgﬁ) dz dt. (52)
0 Q

o (I — 1) d& dv du dt,

)
_|_

r(0, -),@(o,-))HHR(IO,E)) da

For more details see [12].
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