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Abstract

We consider a time-dependent and a steady linear convection-diffusion-reaction equation.
These equations are approximately solved by a combined finite element – finite volume method:
the diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements on a tri-
angular grid, and the convection and reaction term by upwind barycentric finite volumes. In
the unsteady case, the implicit Euler method is used as time discretization. This scheme is
unconditionally L2-stable, uniformly with respect to the diffusion coefficient.
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1 Introduction

Consider the convection-diffusion-reaction equation

∂tu− ν∆u+∇ · (uβ) + µu = g in Ω× (0, T ), (1)

with the initial and boundary conditions

u(x, 0) = u(0)(x) for x ∈ Ω, u | ∂Ω× (0, T ) = 0, (2)

respectively. Here Ω ⊂ R2 is a bounded open polygon with Lipschitz boundary, ν and T are
positive reals, and β : Ω 7→ R2, µ, u(0) : Ω 7→ R as well as g : Ω× (0, T ) 7→ R are given functions.
Our key assumptions concern the advective velocity β: we require that β ∈ H1(Ω)2, ∇·β ∈ Lp(Ω)
for some p ∈ (2,∞] and

∇ · β/2 + µ ≥ 0, −β · ∇ϕ ≥ β in Ω (3)

for some function ϕ ∈ C1(Ω) and some constant β > 0. In the case that β is constant, a suitable
function ϕ is given by ϕ(x) := −β · x.

We also consider the steady variant of problem (1), (2), that is,

−ν∆U +∇ · (U β) + µU = G in Ω, (4)

U |∂Ω = 0, (5)

where G : Ω 7→ R is another given function. These problems are of particular interest in the
convection-dominated regime, that is, if ν � |β|, an interest that seems to be motivated by the
belief that the preceding problems in the convection-dominated case show some affinity (although
distant) with the Navier-Stokes system in the same regime. In this spirit, numerical schemes
working well for that latter system are sometimes reduced to problem (1), (2) or (4), (5) so that
they may be accessible to theoretical studies regarding stability or accuracy.

In the work at hand, we consider a discretization of (1), (2) and (4), (5), respectively, that is
motivated in this way. This scheme may be described as follows: the diffusion term in (1) and (4)
is discretized by piecewise linear Crouzeix-Raviart finite elements, and the convective term by an
upwind finite volume method based on barycentric finite volumes on a triangular grid. Choosing
an explicit time discretization, Feistauer e.a. [1, Section 7], [2, Chapter 4.4] tested this FE-FV
method in the case of high-speed compressible Navier-Stokes flows in complex geometries and
obtained very satisfactory results.
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In [3], we applied this FE-FV method to problem (1), (2), using the implicit Euler method as
time discretization. Under the assumption that ∇ · β = 0, µ = 0 instead of (3)1, we showed for
a shape-regular grid (minimum angle condition) that the approximate solution provided by this
approach may be estimated in the L2-norm against the data, with the constant in this estimate
being independent of the diffusion parameter ν, and depending polynomially on β−1, ‖β‖1,p and
on an upper bound of ϕ and ∇ϕ. An analogous result was established with respect to problem
(4), (5).

The fact that in the work at hand, we only suppose (3)1 instead of requiring ∇·β = 0 and µ = 0
might be expected to present no major additional difficulty. However, it turned out that stronger
assumptions have to be imposed. In fact, we introduce the additional condition ∇ · β ∈ Lp(Ω) for
some p > 2, and we require that the maximal diameter of the triangles of the grid has to be small
with respect to β, ‖∇ · β‖p and an upper bound on ϕ and ∇ϕ.

We remark that our approach also carries through if the functions β, µ and ϕ in (3) depend on
time, provided that the spatial H1-norm of β as well as the spatial Lp-norm of ∇ · β is bounded
uniformly with respect to time, and (3) holds at any time with the same constant β. Moreover the
diffusion term ν∆u may be replaced by an elliptic operator in divergence form ∇ · (A · ∇u), where
A = A(x) or A = A(x, t) is a symmetric matrix in R2×2 which is positive definite uniformly with
respect to x and (in the unsteady case) t. Our theory should be expected to hold in the 3D case
as well. There is only one point that might need some effort, that is, to prove an analogue or find
a replacement of equation (9) pertaining to the discrete L2-scalar product.

There is an extensive literature on stability estimates of various discretizations of problem (1),
(2) and (4), (5). In [3], we tried to present a survey on this subject, listing a considerable number
of references. Here we only remark that stability estimates previous to [3] either involve constants
depending exponentially on ν or on quantities related to β, or they depend on T (see [4] for
example), or condition (3)1 is replaced by the stronger assumption ∇·β/2 +µ ≥ δ for some δ > 0.
Among those previous articles, the one closest related to [3] and to the work at hand is reference [5],
which deals with a class of discontinuous Galerkin discretizations of (4), (5). These discretizations
lead to a discrete convection term similar to ours. Moreover – and more importantly –, to our
knowledge reference [5] is the only one previous to [3] which is bases its theory on condition (3)2.

This condition means that the advective velocity β exhibits neither closed curves nor stationary
points (points x ∈ Ω with β(x) = 0). In fact, it is shown in [6] that if β is smooth and presents
these geometrical properties, there is a function ϕ with (3)2. This result was generalized to the case
β ∈ W 1,∞(Ω)2 in [5]. According to [3, Section 5], assumption (3)2 is in a certain sense necessary
and sufficient for stability estimates with constants independent of ν.

2 Notation. FE-FV discretization of (1), (2) and (4), (5),
respectively. Statement of main results.

As already indicated in Section 1, we assume that Ω ⊂ R2 is a bounded open polygon with Lipschitz
boundary. The functions β, ϕ, g, u0 and G and the constants ν, T, β ∈ (0,∞) were also introduced

in Section 1, with β ∈ H1(Ω)2, ∇ · β ∈ Lp(Ω)2 for some p ∈ (2,∞], ϕ ∈ C1(Ω) and µ being such
that (3) is satisfied. We assume that µ ∈ L1(Ω), g ∈ C0

(
[0, T ], H1(Ω)

)
and u(0), G ∈ H1(Ω).

The functions g( · , t) and G are required to belong to H1(Ω) instead of only to L2(Ω) so that they
admit traces on edges, in view of an interpolation operator we will introduce below.

By adding a constant to ϕ, we may suppose without loss of generality that ϕ(x) ≥ ϕ0 (x ∈ Ω)
for some ϕ0 > 0. For example, in the case β = β0 for some β0 ∈ R2\{0}, we may put ϕ(x) :=
2 |β0|diam(Ω)− β0 · (x − x0), where x0 is an arbitrary but fixed point in Ω. Obviously there is a
constant ϕ1 > 0 with ϕ(x) ≤ ϕ1 and |∇ϕ(x)| ≤ ϕ1 for x ∈ Ω. We further introduce a parameter
σ0 ∈ (0, 1), which will appear in condition (6) below. The set Ω, the functions β, ϕ, µ, g, u0 and
G as well as the numbers ν, T, ϕ0, ϕ1, β and σ0 will be kept fixed throughout.

By the symbol C, we denote constants that may depend on σ0, diam Ω, β, ϕ0 and ϕ1, with

polynomial dependence on diamΩ, β−1, ϕ0 and ϕ1. This last feature is important because we
want to control how our estimates are influenced by β. This influence not only manifests itself by
the factor 1 + ‖β‖1,2 appearing in Theorem 2.1 and 2.2, but also via the quantities β, ϕ0 and ϕ1.
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Figure 1: A quadrangle K1
i ∪K2

i (left) and the quadrangle Di inside K1
i ∪K2

i (right).

We consider triangulations T of Ω with the following three properties: Firstly, T is a finite set
of open triangles K ⊂ R2 with Ω = ∪{K : K ∈ T}. Secondly, if K1,K2 ∈ T with K1 ∩K2 6= ∅
and K1 6= K2, then K1 ∩K2 is a common vertex or a common side of K1 and K2. And thirdly,
for any K ∈ T, the relation

Bσ0 diamK(x) ⊂ K (6)

is valid for some x ∈ K. All estimates appearing in the following involve constants that do not
depend on the grid except via the parameter σ0 in (6). We put h := max{diamK : K ∈ T}. As
a consequence of (6), we have

(diamK)2 ≤ c |K| for K ∈ T, (7)

with c > 0 only depending on σ0. Let S be the set of the sides of the triangles K ∈ T. Put
J := {1, ..., #S}, where #S denotes the number of elements of S. Let (Si)i∈J be a numbering
of S, and denote the midpoint of Si by Qi (i ∈ J). Set Jo := {i ∈ J : Qi ∈ Ω}, so that
J\Jo = {i ∈ J : Qi ∈ ∂Ω}. Note that for i ∈ J\Jo, we have Si ⊂ ∂Ω.

We further introduce a barycentric mesh (Di)i∈J on the triangular grid T: If i ∈ Jo, there are

two triangles in T, denoted by K1
i , K

2
i , such that K1

i ∩K2
i = Si. We join the barycenter of each

of these triangles with the endpoints of Si. In this way we obtain a closed quadrilateral containing
Si (Fig. 1). This quadrilateral is denoted by Di. If i ∈ J\Jo (hence Qi ∈ ∂Ω), let Di be the
closed triangle whose sides are the segment Si and the segments joining the endpoints of Si with
the barycenter of the (unique) triangle K ∈ T with Si ⊂ K. If i, j ∈ J with i 6= j are such that
the set Di ∩ Dj contains more than one point, then this set is a common side of Di and Dj . In
this case, the quadrilaterals Di and Dj are called “adjacent”, and their common side is denoted
Γij . For i ∈ J , we set

s(i) := {j ∈ J\{i} : Di and Dj are adjacent }.

If i ∈ J and j ∈ s(i), let nij denote the outward unit normal to Di on Γij . This means that nij
points from Di into Dj . We will use the abbreviations

Θ+
ij :=

∫
Γij

max{β(x) · nij , 0} dox µi :=

∫
Di

µdx (i ∈ J, j ∈ s(i) ).

Since nij = −nji
(
i ∈ J, j ∈ s(i)

)
and because of (3)1 , we get∑

j∈s(i)

(Θ+
ij −Θ+

ji)/2 + µi =
∑
j∈s(i)

∫
Γij

β(x) · nij dox/2 + µi ≥
∫
Di

∇ · β dx/2 + µi ≥ 0 (8)

for i ∈ Jo. We introduce two finite element spaces by setting

Xh := {v ∈ L2(Ω) : v|K ∈ P1(K) for K ∈ Th, v continuous at Qi for i ∈ J},
Vh := {vh ∈ Xh : vh(Qi) = 0 for i ∈ J\Jo},
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where P1(A), for A ⊂ R2, denotes the set of all polynomials of degree at most 1 over A. The spaces
Xh and Vh are nonconforming finite element spaces based on the piecewise linear Crouzeix-Raviart
finite element.

From [7, (3.29), (3.31), (3.33)], we take a formula for the L2-scalar product (vh, wh) of vh, wh ∈
Xh, that is,

(vh, wh) =
∑
i∈J

vh(Qi)wh(Qi) |Di|. (9)

Put H1(Ω) ⊕ Xh := {v + wh : v ∈ H1(Ω), wh ∈ Xh}, and let Ih : H1(Ω) ⊕ Xh 7→ Xh be the
interpolation operator introduced in [8, 8.9.79]; it is defined by

Ih(v) :=
∑
i∈J

l−1
i

∫
Si

v(x) doxwi for v ∈ H1(Ω)⊕Xh,

where li denotes the length of Si (i ∈ J). Note that a function v ∈ H1(Ω) admits a trace on Si for
i ∈ J , and a function vh ∈ Xh verifies the equation∫

Si

E(vh|K1
i ) dox = li vh(Qi) =

∫
Si

E(vh|K2
i ) dox (i ∈ Jo),

where E(vh|Ks
i ) denotes the continuous extension of vh|Ks

i to Si (s ∈ {1, 2}). Thus the operator
Ih is well defined. By [8, Lemma 8.9.81], it satisfies the estimate

‖Ih(v)‖2 ≤ C‖v‖1,2 for v ∈ H1(Ω).

It will be useful to introduce another interpolation operator besides Ih. In fact, for v ∈ L2(Ω) with
v|K ∈ C0(K) for K ∈ Th, v continuous at Qi for i ∈ J , we set %h(v) :=

∑
i∈J v(Qi)wi. Next we

define a discrete convection term bh, which is to approximate the variational form

b(v, w) :=

∫
Ω

(
∇ · (vβ) + µv

)
w dx

(
v, w ∈ H1(Ω)

)
associated with the convection term β · ∇u in (1) and (4). We put

bh(vh, wh) :=
∑
i∈J

wh(Qi)
( ∑
j∈s(i)

(
Θ+
ij vh(Qi)−Θ+

ji vh(Qj)
)

+ µi vh(Qi)
)

for vh, wh ∈ Xh.

This definition means that we discretize b by an upwind finite volume method on the barycentric
grid (Di)i∈J .

In view of discretizing the time variable, we fix N ∈ N and choose t1, ..., tN ∈ (0, T ) with
t1 < ... < tN . Put t0 := 0, tN+1 := T, τk := tk − tk−1 for 1 ≤ k ≤ N + 1. For brevity, we put

Gh := Ih(G) and introduce functions g
(k)
h : Ω 7→ R by setting

g
(k)
h (x) := Ih

(
g( · , tk)

)
(x) for k ∈ {0, ..., N + 1}, x ∈ Ω.

Now we are in a position to introduce the finite element – finite volume discretization of problem
(1), (2) and (4), (5), respectively, that we want to study in the work at hand. Concerning (1), (2),

we consider functions u
(0)
h , ..., u

(N+1)
h ∈ Vh with

τ−1
k (u

(k+1)
h − u(k)

h , vh) + ν ((u
(k+1)
h , vh))Xh

+ bh(u
(k+1)
h , vh) = (g

(k+1)
h , vh) (10)

for vh ∈ Vh, k ∈ {0, ..., N}, u
(0)
h = Ih(u(0)).

This scheme is implicit because both the diffusion and the convection term are discretized implicitly.
For the steady problem (4), (5), we consider an approximate solution Uh ∈ Vh satisfying

ν ((Uh, vh))Xh
+ bh(Uh, vh) = (Gh, vh) for vh ∈ Vh. (11)

Our main results may be stated as follows.
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Theorem 2.1 Problem (10) admits a unique solution.

Put h0 :=
(
β/(2Cϕ1‖∇ · β‖p)

)p/(p−2)
, where C > 0 is some constant only depending on σ0.

Let u
(0)
h , ..., u

(N+1)
h ∈ Vh be a system of functions satisfying (10). Then, if h ≤ h0,(N+1∑

l=1

τl ‖u(l)
h ‖

2
2

)1/2

+ max
1≤l≤N+1

‖u(l)
h ‖2 + ν1/2

(N+1∑
l=1

τl ‖u(l)
h ‖

2
Xh

)1/2

(12)

≤ C(1 + ‖β‖1,2)
[(N+1∑

l=1

τl ‖g(l)
h ‖

2
2

)1/2

+ ‖u(0)
h ‖2

]
.

Theorem 2.2 Problem (11) admits a unique solution. Let Uh ∈ Vh be such a solution. Then, if
h ≤ h0,

‖Uh‖2 + ν1/2‖Uh‖Xh
≤ C(1 + ‖β‖1,2)‖Gh‖2,

with h0 from Theorem 2.1.

3 A sketch of a proof of Theorem 2.1 and 2.2.

For vh ∈ Vh, we put

Kh := Kh(vh) :=
∑
i∈J

∑
j∈s(i)

Θ+
ji

(
vh(Qi)− vh(Qj)

)2
,

Ah := Ah(vh) :=
∑
j∈J

vh(Qi)
2
∑
j∈s(i)

(
Θ+
jiϕ(Qi)−Θ+

ijϕ(Qj)
)
,

Bh := Bh(vh) := −
∑
i∈J

vh(Qi)
2
∑
j∈s(i)

∫
Γij

ϕ(x)β(x) · nij dox.

Then

bh(vh, vh) ≥ Kh/2, in particular bh(vh, vh) ≥ 0 for vh ∈ Vh; (13)

compare the proof of [3, Lemma 3.3];

Ah/2 +
∑
i∈J

vh(Qi)
2ϕ(Qi)

( ∑
j∈s(i)

(θ+
ij − θ

+
ji) + µi

)
≤ bh

(
vh, %h(vhϕ)

)
; (14)

compare the proof of [3, Lemma 3.4];

Bh ≥ β ‖vh‖22 −
∑
i∈J

vh(Qi)
2

∫
Di

(∇ · β)(x)ϕ(x) dx; (15)

compare the proof of [3, Lemma 3.5];

|Ah −Bh| ≤ C‖β‖1/21,2 ‖vh‖2K
1/2
h ; (16)

see the proof of [3, Lemma 3.6]. The fact that bh(vh, vh) ≥ 0 for vh ∈ Vh (see (13)) implies the
existence result in Theorem 2.1 and 2.2. From (13) – (16), we may conclude that

β ‖vh‖22 ≤ C‖β‖1/21,2 ‖vh‖2 bh(vh, vh)1/2 +
∑
i∈J

vh(Qi)
2

∫
Di

(∇ · β)(x)ϕ(x) dx (17)

+2bh
(
vh, %h(vhϕ)

)
− 2

∑
i∈J

vh(Qi)
2ϕ(Qi)

( ∑
j∈s(i)

(θ+
ij − θ

+
ji) + µi

)
.

By (8), the two sums on the right-hand side of (17) are bounded by∑
i∈J

vh(Qi)
2

∫
Di

(∇ · β)(x)
(
−ϕ(Qi) + ϕ(x)

)
dx,
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hence by

‖∇ϕ‖∞
∑
i∈J

vh(Qi)
2diamDi

∫
Di

|(∇ · β)(x)| dx ≤ ϕ1‖∇ · β‖p
∑
i∈J

vh(Qi)
2diamDi |Di|1/p

′
.

For i ∈ J , let K1
i and K2

i be the two triangles K in T with Qi ∈ K. Then

ϕ1‖∇ · β‖p
∑
i∈J

vh(Qi)
2diamDi |Di|1/p

′
≤ ϕ1‖∇ · β‖p

∑
i∈J

vh(Qi)
2diamK1

i |Di|1/p
′

≤ Cϕ1‖∇ · β‖ph2/p′−1
∑
i∈J

vh(Qi)
2 |Di|,

In the last inequality we used (7), in the sense that (diamK1
i )2 ≤ C |K1

i | = C |Di∩K1
i |/3 ≤ C |Di|.

Here we write C for constants only depending on σ0. It follows with (9) that

ϕ1‖∇ · β‖p
∑
i∈J

vh(Qi)
2diamDi |Di|1/p

′
≤ Cϕ1‖∇ · β‖ph2/p′−1‖vh‖22.

Returning to (17), we thus obtain

β ‖vh‖22 ≤ C‖β‖1/21,2 ‖vh‖2 bh(vh, vh)1/2 + 2bh
(
vh, %h(vhϕ)

)
+ Cϕ1‖∇ · β‖ph2/p′−1‖vh‖22.

By the choice of h0 in Theorem 2.1, we thus get in the case h ≤ h0 that

β ‖vh‖22/2 ≤ C‖β‖1/21,2 ‖vh‖2 bh(vh, vh)1/2 + 2bh
(
vh, %h(vhϕ)

)
,

and then by another shoestring argument,

‖vh‖22 ≤ C(1 + ‖β‖1,2)
(
bh
(
vh, %(vhϕ)

)
+ bh(vh, vh)

)
.

Now Theorem 2.1 and 2.2 follow with exactly the same arguments as used in [3] in order to prove
[3, Theorem 2.1 and Theorem 2.2], respectively.
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[2] Feistauer, M., Felcman, J. & Straškraba, I.: Mathematical and computational methods for
compressible flow. Clarendon Press, Oxford, 2003.

[3] Deuring, P., Eymard, R. & Mildner, M.: L2-stability independent of diffusion for a finite
element – finite volume discretization of a linear convection-diffusion equation. To appear in
SIAM Journal on Numerical Analysis

[4] Barrenechea, G. R., John, V. & Knobloch, P.: A local projection stabilization finite element
method with nonlinear crosswind diffusion for convection-diffusion-reaction equation. Math.
Model. Numer. Anal., vol. 47: (2013) pp. 1335–1366.

[5] Ayuso, B. & Marini, L. D.: Discontinuous Galerkin methods for advection-diffusion-reaction
problems. SIAM Journal on Numerical Analysis, vol. 47: (2009) pp. 1391–1420.

[6] Devinatz, A., Ellis, R. & Friedman, A.: The asymptotic behavior of the first real eigenvalue
of second order elliptic operators with a small parameter in the highest derivative. II. Indiana
University Mathematics Journal, vol. 23: (1973) pp. 991–1011.
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