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Abstract 

Fine structure of stratified flows observed in laboratory with schlieren instruments is 
calculated using supercomputers on basis of the fundamental equations set. Two kind of 
stratified flows are analysed: diffusion induced flows on motionless strip and flow around 
uniformly moving strip. Data of calculations and laboratory experiments are well 
compatible.  
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1 Introduction 
Modern optical instruments revealed spatially ordered structures of different scales 

from light-years length in the interstellar medium to microns in the laboratory. Regular 
radial structures were observed in the images of the Red giant in the constellation 
Camelopardalis and in drying drops of diluted suspension of quartz nanoparticles in 
alcohol with thickness of fifty microns [1]. Thin streaky structures are formed in the 
tank filled with a dilute suspension of aluminium powder during parametric excitation 
of standing waves [2]. Compact spot of a solvable dye on the surface of the compound 
vortex expands into spiral arms that gradually disintegrate into individual filaments [3]. 
Unlike liquid, solid markers are not only transported by a vortex flow, but also are 
swirling around their own centres [4]. Wide range of scales of streaky structures 
indicates universal nature of their formation and the need to develop a general 
mathematical model of the process.  

Modern theories are constructed for describing both dynamics and the fine 
structure of environmental and industrial flows and pointing indicating directions for 
development of the perspective experimental technique and data processing. 
Conventional basis for universal theory is complete set of balance equations 
representing fundamental laws of conservation for dissipative fluids. All basic equations 
including continuity, momentum, complete energy and constituents of the fluid 
components balance equations were postulated in XIX century. They were collected 
together and presented in the main textbooks, starting from volume 3 of Landau's and 
Lifshitz's seminal course [5]. 

 

2. Fundamental equations set. 
Collected together and supplemented by the state equation basic differential 

equations form the fundamental set, defining the “fluid flow” as a transport of 
momentum accompanied by self-consistent variations of density, energy (temperature) 
and concentrations of dissolved matter. The set contains only observable physical 
quantities such as momentum p  and basic thermodynamic parameters that are density 
ρ , pressure P , entropy (internal energy or temperature T ), concentration (salinity S), 
which can be measured by different independent methods. For example momentum p  
can be defined from independent measurements of the flow rate and forcing action of 
the flow on a small obstacle.  
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The fundamental equation set describing flows of a compressible stratified and 
generally rotating fluid in the Euclidean coordinate frame includes empiric equations of 
state, differential equations of continuity, balance of momentum, temperature, salinity 
and has the form  
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Here ρ  is density, ip  are components of momentum vector, v /j jp= ρ  is a flow 

velocity, kΩ  is angular velocity, ig  is gravity acceleration, if  is external force, , ,T Sν κ κ  
are dissipative coefficients of kinematic viscosity, temperature conductivity and 
diffusivity. Direct calculations have shown that the set (1) is characterized by 
continuous ten-parametric Galilean groups [6]. Velocity of fluids is non-conservative 
derivative parameter and can be calculated in a given point of the flow as ratio of 
momentum to density of the fluid /= ρv p . Due to independence of basic physical 
quantities like momentum and density in fluid flows geometry of momentum and 
velocity fields are not identical. So the flow cannot be defined as motion that is as 
transformation of the 3D Euclidean space into itself saving distances between objects.  

For applied purposes besides the fundamental equations set innumerous number of 
reduced and constitutive equations were proposed during last century. The row of 
models includes different versions of turbulence and boundary layer theories, gas 
dynamics equations, linear and different non-linear equations and sets [5]. The every 
system is characterized by its own set of symmetries illustrating specific laws of 
conservation. Constitutive and reduced models are characterized by expanded or 
reduced groups of symmetries [6]. Change in symmetries indicates essential difference 
in properties of models and their solutions. Difference of symmetries also means that 
compared sets are not reducible and cannot be identically transformed into each other 
and the same symbols in different systems have different meaning. 

 

3. Basic length scales of the set.  
The rank of the non-linear set (1 –5), order of its linear version and degree of 

algebraic characteristic equations (or dispersion relation for wave processes) is defined 
by the condition of compatibility. The system (1) supplemented by appropriate initial 
and boundary conditions is characterized by a number of distinguished length scales of 
two types. Large scales characterize initial or boundary conditions and includes 
geometrical length of the problem L , scale of stratification 1

ln /d dz
−

ρΛ = ρ  and so on. 

Natural scale of time is buoyancy 2 /bT N= π  or rotation 2 /r rT = π Ω  period ( , rN Ω  are 
appropriate frequencies). 
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Derivative scales are produced from the set of physical parameters of the problem 
like gravity wave length for attached surface 2 /g U gλ =  and 2 /i U gλ = π Λ  for internal 

gravity waves (U  is typical velocity). A set of small scales is defined by dissipative 
coefficients and typical frequencies (buoyancy N  or global rotation Ω ) N Nνδ = ν , 

T
N T Nκδ = κ , S

N S Nκδ = κ  or ν
Ωδ = ν Ω , T

T
κ
Ωδ = κ Ω , S

S
κ
Ωδ = κ Ω  or the problem 

velocity U Uνδ = ν  and s
U s Uκδ = κ . The first scales are similar the Stokes length 

scale ν
ωδ = ν ω  on an oscillating plane [1]. The second type scales that are Prandtl’s and 

Peclet’s type U Uνδ = ν , T
U T Uκδ = κ , S

U S Uκδ = κ  characterize a fine structure in jets and 
wakes. Usually values of large and small scales are distinguished on several orders of 
magnitude.  

There are also combined scales like dissipative gravity scale 3L g Nν = ν  
characterizing critical conditions for the problem geometry change. Multiplicity of 
intrinsic scales reflects complex nature of the fluid flows. Large number of intrinsic 
scales is related with the high dimension of the problem in the extended space. In 
experiments macroscales determine the size of the visualizing view field, which should 
contain all the components of flows and micro – scales define temporal and spatial 
resolution of the measuring and recording instruments. 

Macro-and micro-scale relationships that define traditional dimensionless 
complexes that are Reynolds Re 1UUL L ν= ν = δ >>  and Peclet numbers on 

temperature and salinity Pe 1T
T T UUL L κ= κ = δ >> , P e 1S

S S UUL L κ= κ = δ >> . These 

ratios are large in the environment and laboratory experiments. In most cases, the 
change in density of the flow scale is small and values of length scale 

0C 1L= Λ = ρ δρ >>  as dissipative relations 2C 1N NL L Nν ν= δ = ν >>  with the 

kinematic viscosity, thermal diffusivity C T
N
κ , or substance diffusion C S

N
κ  are large. The 

presence of large relationships in the system with small coefficients in the terms with 
the highest derivatives justifies the possibility of singular perturbation theory to 
calculate a wide range of processes, primarily slow flows such as diffusion induced by 
topography or internal waves.  

The compatibility condition defines the rank of non-linear set, the order of its 
linearized version and degree of algebraic characteristic (dispersion) equations that is a 
total or minimal (for non-linear set) number of independent functions constituting 
complete solution. In fluids with small dissipative coefficients complete classifications 
of infinitesimal periodic flows components describing besides the waves a fine flow 
structure were given [7]. It is shown that the number of regularly perturbed solutions of 
basic governing equations systems and its reduced versions when effect of one or more 
dissipative factor are ignored up to the approximation of ideal fluid remains constant 
and equal two [9].  

The number of fine flow components described by singular perturbed solutions 
decreases from eight in the complete model to two when only viscosity effects are saved 
as well as density stratification. Two different fine flow components in viscous 
homogeneous fluid became identical. Merging of these initially different components 
means the degeneration of the given set and insolubility of the problem of calculating 
the three-dimensional flows of a homogeneous fluid. Using different kinds of fluids that 
are stratified with evident buoyancy effects ( ( ) 1~ 1 sN O − ), weakly stratified (potentially 
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homogeneous ( )5 1~ 10 sN o − − ) and actually homogeneous fluid of constant density 

( 0N ≡ ) gives a room for objective control of accuracy of numerical codes.  
In flows a mechanical energy is transported by large-scale components. Energy 

dissipation and vorticity are associated with the fine-structure components. Contrast of 
the flow pattern is underlined by contaminants which are accumulated on interfaces. 
Condition of all component of different scales registration imposes additional 
requirements on experimental techniques concerning temporal and spatial resolution.  

Loci of fine flow components depend on geometry and energy of the processes. 
They exist in all flows as slow like waves or diffusion induced flows on obstacles and in 
a fast jets and wakes. To calculate their properties the complete solutions of equation (1) 
set must be constructed. There are no universal methods for solutions the complex non-
linear set (1) is treated numerically or reducing solvable form. In case of very low 
velocities and weak dissipative factors the set (1) is investigated by mixed analytical 
and numerical methods. As impressive example of a slow flow structure the diffusion 
induced flows on a finite size obstacle are selected. They are formed by buoyancy 
forces created by irregularities of stratification caused by the interruption of the 
diffusion flux in the environment on an impermeable obstacle. 

 

4. Diffusion induced flows on obstacles.  
Diffusion-induced flows play a key role in the processes of mixing and passive 

substance transport and also in the formation of stratified medium fine structures. Such 
flows may lead to the formation of intensive valley and mountain winds in a stably 
stratified atmosphere and density flows in oceans. A number of physical processes are 
essentially influenced by diffusion-induced flows, including processes such as the 
melting of icebergs, the migration of tectonic plates and the transport of minerals and 
plankton. It may also trigger a propulsion mechanism, which leads to the self-movement 
of neutral buoyancy solids with special shapes inside a stably stratified ocean.  

Numerical solution of set (1) where temperature effects were neglected was 
constructed using the open software package OpenFOAM. The developed algorithm 
works in all ranges of problem parameters corresponding to laboratory, atmosphere and 
hydrosphere conditions, including zero angles of inclination of the impermeable surface 
to horizon when conditions of existence of stationary asymptotic stationary solutions are 
violated.  
 

 a)  b) 
 

Figure 1: Pattern of streamlines of diffusion induced flows on the plate (5 cmL = ; N =1.26 s-1):   
a) – sloping at 10ϕ = ° ; b) – horizontal 0ϕ = ° . 
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Calculations showed individual patterns of various physical parameters of the 
problem, part of which is represented in Figure 1. In the flow patterns of streamlines 
thin interfaces separate a number of regular cells (1 - 6 in Figure 1, a, positive direction 
by rotating marked green). Above the horizontal plate cells of different signs are located 
oppositely relative to the principal planes (Figure 1, b).  

Even more clearly the fine structure of the flow is expressed in fields of the 
pressure perturbations (Figure 2, a). Along the plate surface a thin layer of the pressure 
deficit of non-uniform thickness is located. The most pronounced pressure perturbations 
are presented on the upper side near lower end of the plate and on the lower side near 
upper end. Mutual actions of the pressure deficit create the angular moment turning free 
plate of neutral buoyancy to horizontal position when diffusion induced flows have 
maximum value for given geometry of the obstacle.  

 

 a)   b) 

c)  d) 
 

Figure 2: Fields of disturbances around the plate with length 5 cmL =  inclined under angle 10ϕ = °  to 

horizon: a) – pressure; b) – the rate of energy dissipation ε ; c) – dynamic vorticity Ω ; d) – tempo of 

baroclinic generation of vorticity Ω&  ( 11.26 sN −= , / 120bt Tτ = = , different scales on the axes). 
 

Complex pattern of the rate of dissipation of mechanical energy (Figure 2, b) 
differs significantly from the smooth field of streamlines and the pressure field. Spatial 
structure of the mechanical energy dissipation rate ε  has specific "rosettes" shape at the 
ends of the plate which is typical for pattern of dissipative gravity waves or "zero 
frequency" waves. In pattern of the dynamical vorticity field { }rot 0, , 0= = ΩΩ v  thin 

layer of the counter clockwise circulation adjusted to the plate surface is bounded by 
more thicker layer of clockwise circulation created in complex flow domain near the 
plate tips (Figure 2, c). Due to crossing of isopycnals and isobars additional vorticity is 
generated and in the close vicinity and at some distance from the obstacle with tempo 

1P −= ∇ ×∇ρΩ&  (Figure 2, d). The formation of new fine components in the vicinity of the 
edges of the plate is caused by the combined action of buoyancy, limiting the lifting 
height of separating jets streams, viscosity and diffusivity effects. 
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The calculated field of the density gradient perturbation for the diffusion induced 
flow on a horizontal or inclined plate, which manifest and large-scale components, the 
size of which is defined by the size of obstacle, and thin interfaces with scales 

N Nνδ = ν  or S
N S Nκδ = κ , at long times consistent with the schlieren image (“natural 

rainbow method” with a horizontal slit and regular grating) of the refractive index 
gradient near the plate in a laboratory tank (Figure 3, a, b). 

In the images in Figure 3 stand out extensive streaky structures which are directly 
adjacent to the extreme points of the obstacles. The length of the interfaces increases 
with the sensitivity of the method of registration. Flow indicated by diffusion, lead to 
self-induced motion of free neutral buoyancy obstacles in a stratified medium with 
arbitrary geometry constraints and its orientation in space. Self-motion of obstacles is 
absent in a homogeneous fluid. Calculated velocities of fluid, the forces and angular 
moments acting on the wedge, consistent with the data of direct measurements of the 
velocity of self-motion of free neutral buoyancy wedge in a laboratory tank.  

 

 a)  б) 

    c) 
 

Figure 3: Images of diffusion induced flows: a, b) – schlieren and numeric visualization for laboratory 
condition of density gradient perturbations in the diffusion induced flow on sloping motionless strip 

( 5 cmL = , 10.84 sN −= , 7.5 sbT = , 40ϕ = o ); c) – smokes in Yuzhno-Sakhalinsk valley. 
 

The overall pattern of the flow in the cavity (double vortex and sinking jet over 
the center and radiating stripe flows along the valley slopes) is preserved in the case of 
real atmospheric processes. As an example of the diffusion induced flow pattern in the 
atmosphere in Figure 3, c photograph at first glance paradoxical picture of industrial 
smokes in Yuzhno-Sakhalinsk is given. 

 

5. 2D mathematical model of flow past a horizontal plate for 5Re 10< .  
With beginning of the plate motion the flow pattern around a plate changes 

radically. Internal waves and vortices are formed together with thin density wake. The 
set (1) were used for flow around the plate calculations together with the conventional 
boundary conditions that are no-slip for velocity components and no-flux for substance 
on the obstacle surface and attenuation of all perturbations at infinity [7] 
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The problem was analysed numerically using the finite volume method realized in 
original solvers of own development of the free distributed OpenFOAM package. The 
computations were run in parallel regime based on domain decomposition method using 
the facilities of the Joint Supercomputer Centre of the Russian Academy of Sciences 
and the Supercomputing Centre of Lomonosov Moscow State University.  

When describing features of flow structure and dynamics around a horizontal plate 
several basic flow regimes should be distinguished. They include motionless state of the 
obstacle (Re 0= ), small ( 3Re 10< ), moderate ( 3 410 Re 2 10< < ⋅ ) and relatively high 
( 4 52 10 Re 10⋅ < < ) speeds of plate motion, each of which is characterized by its own set of 
flow structural elements. To estimate quality of codes separate calculations for strongly 
stratified and weakly stratified fluids, potentially and actually homogeneous fluids have 
been performed with the same initial and boundary conditions. 

Fields of diffusion induced flows on a motionless obstacle are used for construction 
of initial conditions in problems of real stratified flows dynamics and technological 
applications. 

 

 a)  b) 

Figure 4: Patterns of vorticity and vertical component of density gradient fields  of stratified flow 

around a horizontal plate: 1 410 cm, 0.5 cm, 1.2 s , Re 8 10L h N −= = = = ⋅  
 

With start of plate movement initially symmetric structure of diffusion induced flow 
on a horizontal plate is changed and internal attached waves, upstream perturbations and 
vortex rolls being formed. Sources of internal waves are edges of the plate which 
generate intensive vertical displacement of fluid from initial positions of neutral 
buoyancy that results in formation of periodic fluid oscillations with decaying 
amplitudes.  

 

 a)  b) 

Figure 5: Normalized pressure profiles at the leading (a) and trailing (b) edges of the plate for different 

types of fluids:  curves 1 – 3): 5 11.2;10 ; 0 sN − −= . 
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More details on stratified flow structure and dynamics around a horizontal plate at 
small and moderate Reynolds numbers can be found in [9]. In the case of relatively high 
Reynolds numbers the most manifested flow components in a stratified medium are 
both vortex structures generated by the sharp front edge of the plate and a vortex wake 
past the obstacle (Figure 4). Stratified flow structure evolves over time with 
downstream speed of vortical structures along the plate surface of about 0.4U0.  

Instantaneous normalized pressure distributions across the stream at the front and 
trailing edges of the plate are shown in Figure 5 or strongly and weakly stratified, 
potentially and actually homogeneous fluids. The greatest differences of the profiles for 
different types of fluids are observed near the trailing edge of the plate where the vortex 
dynamics is the most intensive. Stratification effects like vortex shedding are 
determined by vertical dimension of an obstacle, which sets pressure, density and 
velocity gradients. So, in the considered case of a rather thick plate the stratified flow 
turns to be more sensitive to either direct or indirect effects of buoyancy forces.  

General questions of fluid flows theory, conditions of resolvability and 
classification of flow components following from analysis of the fundamental 
governing equations sets are discussed in [10].  
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